
	 	

 

Abstract— Brain-computer interfaces (BCIs) have the 
potential to restore motor abilities to paralyzed individuals.  
These systems act by reading motor intent signals directly from 
the brain and using them to control, for example, the 
movement of a cursor on a computer screen or the motion of a 
robotic limb.  To construct a BCI, a mapping must be specified 
that dictates how neural activity will actuate the device.  How 
should these mappings be constructed to maximize user 
performance?  Most approaches have focused on this problem 
from an estimation standpoint, i.e., mappings are designed to 
implement the best estimate of motor intent possible, under 
various sets of assumptions about how the recorded neural 
signals represent motor intent.  Here we forward an alternate 
approach to the BCI design problem, using ideas from optimal 
control theory. We first argue that the brain can be considered 
as an optimal controller.  We then introduce a mathematical 
definition of BCI usability, and formulate the BCI design 
problem as a constrained optimization problem that maximizes 
this usability.     

I. INTRODUCTION 

Over the past decade, brain-computer interfaces (BCIs) 
have received a great deal of attention due to their promising 
clinical applications.  These devices take recorded neural 
activity and use it to directly actuate some device, such as a 
robotic limb [1, 2] or a cursor on a computer screen [3-5].  
One promising class of these devices is the intracortical BCI, 
which uses as its signal source the recorded activity of dozens 
to hundreds single neurons recorded with multielectrode 
recording arrays.  Intracortical BCIs have recently shown 
impressive performance in early clinical trials [6-8].   

These demonstrations of clinical feasibility have spawned 
renewed interest in the decoding problem: how should the 
mapping from neural activity to device movement be 
designed to maximize patient performance with the device?  
A variety of approaches have been suggested, including 
optimal linear estimators [9], Kalman filters [10, 11], particle 
filters [12], neural network decoders [13, 14], point-process 
filters [15, 16], kernel-based techniques [17], and others [18].  
Differences in these approaches all stem from the different 
assumptions they make about how neural activity relates to 
desired movements.  For example, if one assumes that neural 
activity encodes the desired movement velocity, the best 
approach might be either a velocity Kalman filter or a variant 
like the Laplace Gaussian filter [19], depending on whether 
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one assumes that neural noise is best represented as Gaussian 
or  Poisson.  If one assumes instead that neural activity 
encodes intended joint torques, the best approach might be 
direct torque control or a hybrid thereof [20].   

Nearly all existing decoders assume that neurons are 
driven by a “motor intent” signal, and recorded neural firing 
rates are treated as noisy observations of that underlying 
motor intent.  Under this viewpoint, BCI design is properly 
treated as a signal estimation problem.  An alternate view, 
however, is to consider the neural activity as a control signal 
that is sent via the spinal cord to the muscles.  In this view, 
the neurons don’t directly reflect an intended movement, 
although they may correlate with motor intent.  Rather, the 
neurons represent the inputs that will drive the effector in the 
desired manner.  While this may be a subtle distinction, it has 
powerful implications for BCI design.  If neurons encode 
control signals, BCI design should not be approached as a 
signal estimation problem, but rather as a control-system 
design problem.   

In this paper, we argue that the control-theoretic approach 
to BCI design may provide distinct advantages to the signal 
estimation approach, and present a general framework for 
designing BCI decoders as optimally-controllable systems.  
In section II we give a brief review of estimation-based BCI 
design, and list some of its shortcomings.  In section III we 
argue that the brain may be considered as an optimal 
controller.  In section IV, we present a mathematical 
definition of BCI usability, and reformulate the BCI decoding 
problem as a constrained optimization problem in control 
theory.  In section V we present one solution to this problem 
in which we solve for the optimal dynamics of a second order 
linear decoder.  We conclude in section VI.  

II. ESTIMATION-BASED BCI DESIGN 

A. Maximum Likelihood Approaches to BCI Design 

In this section we review the most commonly used BCI 
decoding algorithm, the velocity Kalman filter (VKF), taking 
care to specifically outline the assumptions it makes about 
the neural representation of movement.  As the name implies, 
the VKF is among the class of BCI decoding algorithms that 
are based on signal estimation.  Specifically, if one is 
recording the firing rates ∈  from n neurons at time t, 
the VKF assumes that they will be related to the intended 
velocity of the end-point of the prosthetic effector ∗ ∈  
through the equation 

∗ . (1)

Here	 the	 dimensionality	 of	 the	 velocity,	 d, is typically 
either 2 for movements constrained to a plane or 3 for 
movements in free space, and the noise in the fit is assumed 
to be zero mean Gaussian, ~ , Σ . 
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In addition to the linear Gaussian assumption governing 
how neurons relate to intended velocity, the VKF also makes 
the assumption that the intended velocity evolves smoothly 
over time according to 

 ∗ ∗ , (2)

where ~ ,Π  is also assumed to be Gaussian. 

If the assumptions embodied in equations (1-2) hold true, 
the BCI design problem reduces to a Bayesian inference 
problem where the goal is to estimate the a posteriori 
probability of the intended kinematics when given the 
recorded spike counts.  The solution in this case is, of course, 
the well-known Kalman filter [21], first introduced for BCI 
use by Wu et al. [10].  The Kalman filter provides an efficient 
recursive algorithm to compute the posterior probability 

∗| ,…, . The optimal estimate  of the intended 
kinematics ∗ is the mean of this distribution.  The position 
of the effector (either the computer cursor or the end-point of 
a robotic limb), pt, is taken as the integral of this estimated 
velocity.  From these considerations, we can write down the 
state model that describes how the BCI cursor state evolves 
over time in response to inputs.  We call this the BCI plant, 
and it takes the form  

 Δ
. (3) 

Here, ∆ is the time interval for one step (often, ~30 ms or so), 
I is a  identity matrix, and Kt is the Kalman gain. 
Although technically the Kalman gain is a function of time, 
in practice it converges to a stable value within a few 
timesteps, and in fact in many BCI applications it is 
initialized to its stable value before decoding begins [22].  
Typical converged values of  are approximately 
0.75 I. 

B. Failures of the Estimation Framework for BCI Design 

Estimation-based approaches to BCI design have 
performed quite well.  In fact, by most metrics, estimation-
based approaches have enabled cursor control that is within 
roughly a factor of two of the performance that can be 
achieved with the natural limb [3].  However, there are three 
observed features of BCI control that are hard to explain 
within the signal-estimation framework.  

1) Certain algorithms perform worse than expected.  In a 
survey of the performance achieved with different types of 
linear decoders, it turns out that control is superior with 
algorithms that correspond to simple physical systems 
relative to control with algorithms that do not [23].   

2) The estimation-framework assumes static tuning.  The 
motor system is capable of adapting to a wide variety of 
perturbations [for review, see 24, 25].  Learning also occurs 
under BCI control [26-28].  However, most BCI decoding 
algorithms assume static tuning.  Thus, an algorithm designed 
to be optimal under static tuning may no longer prove to be 
optimal if the system is dynamic.  Another consequence of 
learning is that algorithms that work well at predicting arm 
movements off-line may not be the algorithms that work well 
in a closed-loop setting [9], and further, algorithms that do 
not perform well off-line may turn out to be very good in 
closed-loop [29].     

3) Biomimetic decoders are not guaranteed to be optimal.  
Finally, most decoders operate from a biomimetic standpoint, 
meaning they try to mimic natural limb control to the greatest 
extent possible.  While this approach helps minimize training 
times so patients can develop control relatively quickly, it is 
not necessarily true that biomimetic algorithms are optimal.  
With learning, subjects can gain control of even non-intuitive 
BCI decoders [30-33].  

To overcome these limitations, ideally, one needs an 
approach to BCI design that would take learning into account 
so that the decoder is optimal after learning has occurred.  In 
the next two sections we present a method that should allow 
for provably-optimal BCI control, post-learning. 

III. THE BRAIN AS AN OPTIMAL CONTROLLER 

In 2002, Todorov and Jordan linked the field of control 
theory with the field of biological motor control, by showing 
how observed features of coordinated movements are 
predicted to arise from an optimal solution to a stochastic 
feedback control problem [34].  Subsequently, optimal 
feedback control theory has proven to be a useful framework 
for investigating behavioral motor control in a number of 
different domains [35-38].  Support for the idea that the brain 
should be considered as an optimal feedback controller 
includes the following.  First, it has been found that task- 
deviations in kinematic trajectories tend to be left uncorrected 
if they are task irrelevant [39, 40], meaning that behavioral 
variance is larger along unconstrained task dimensions than it 
is along constrained task dimensions.  This would make sense 
if the brain chose control signals to minimize overall effort 
(control signal magnitude), as it would require effort to 
compensate for errors, so it should not be done if those 
deviations do not directly impact performance.  Second, 
movements have been shown to distribute optimally across 
redundant effectors, be they muscles of the wrist in a center-
out movement task [41] or across the two arms when using 
both to control a single cursor [42].  Optimal here refers 
again to the idea that the brain would choose control signals 
to minimize effort, which would indicate that redundant 
control signals should each contribute some amount of push 
to the effector, as opposed to relying solely on a single 
control signal. Third, reflexive movements appear to be 
programmed to respond with gains that reflect the task 
geometry and goal [43-45].  This kind of flexible control over 
reflex arcs is predicted by optimal feedback control models.     

Given these findings, here we assume the following.  (1) 
The brain acts as an optimal controller, i.e., it emits control 
signals that are the minimum of a cost function.  (2) 
Recorded neural activity in primary motor cortex is a direct 
reflection of this control signal, contaminated with noise (that 
may be signal dependent). (3) The end goal result of learning 
is to produce the optimal control signals for a given effector.  
With these assumptions, we can develop a rigorous 
framework for designing BCI interfaces.  In the next two 
sections we will frame the BCI design problem as the result 
of a constrained optimization process, relate it to common 
problems in the field of optimal control, and solve for some 
optimal BCI parameters under a restricted set of assumptions.   

 

 



	 	

 

IV. DESIGNING AN OPTIMAL BCI MAPPING 

In Fig. 1 we lay out a schematic of a typical BCI setup as 
a feedback control system.  Target and cursor information are 
integrated by the brain, which chooses a control signal that 
minimizes some cost function.  This control signal drives 
neurons in primary motor cortex.  A subset of these neurons 
are recorded by a multi-electrode recording array and mapped 
through a decoder to control the state (position and velocity) 
of a cursor on a computer screen. Information about the new 
cursor state is then fed back to the brain by the visual system.  
Possible neuroanatomical sites of the controller and cost 
function operation are mentioned in [46].  

A. Optimal Plant Design 

Denoting x as the state of the cursor and u as the control 
signal, under the assumption that the brain acts as an optimal 
controller, it will output control signals, u*, that are the 
minimum of some cost function .  Formally, we say that  

 ∗ argmin . (4) 

The cost function will take into account not only the relative 
energy or effort required by the control signal, but also the 
task goals, e.g., the desire to move the cursor to a target at a 
particular time.  The optimal cost is defined as the cost on the 
optimal control signals, 

 ∗ ∗ . (5)

Naturally, because cursor state information is used in the 
computation of the cost, the optimal control signal will not 
only be a function of the task and state, but will also be a 
function of the plant: even if task goals and plant states are 
the same, plants with different parameters will result in 
different optimal control signals.  We can explicitly represent 
the plant parameters,  in the cost function to emphasize this 
point: 

 ∗  min ;  . (6) 

With this in mind, it becomes possible to define the 
usability of a plant: we say a plant with parameters 1 is more 
usable than a plant with parameters 2 if, for the same task, 
the expected cost under 1 is less than the expected cost 
under 2.  Therefore we may write a formal definition of an 
optimal plant * as 

∗ argmin


0, ∗
∗ 

argmin


0, ∗ min ;  , 
(7) 

where the expectation here is taken over initial cursor states 
x0 and cursor goal locations x*. This would yield the expected 
cost over the range of movements that the device is likely to 
be used.  Given that not all plant parameters may be possible 
due to physical or practical constraints, under the 
assumptions that the brain acts as an optimal controller, 
optimal BCI design amounts to solving the constrained 
optimization problem specified in (7).  

B. Relationship to Other Problems in Control Theory 

The optimal plant design problem is related to, but 
distinct from, typical classes of problems in control theory.  
In the forward control problem, one is given knowledge of 
the plant and the cost function, and the job is to find the 
control signals that achieve the task goals with minimal cost 
[47] (Fig. 2, green arrow).  In the inverse control problem, 
one is given knowledge of the plant and a set of observed 
control signals that were issued for particular plant states, and 
the job is to infer the cost function for which those control 
signals would be optimal [48, 49] (Fig. 2, red arrow).  

In the optimal plant design problem, one is given the cost 
function, and it is assumed that the ultimate plant will be 
operated in an optimal fashion.  Thus, while the policy is not 
directly specified, it could be derived for any particular plant 
as a forward control problem.  The goal of optimal plant 
design is to find the parameters of the plant that result in the 
least expected cost (Fig. 2, blue arrow). 

V. EXAMPLE: OPTIMIZING BCI DYNAMICS 

In this section we provide an example of how the control-
theoretic approach might be used in BCI design.  
Specifically, we will derive the optimal plant dynamics of a 
second order linear decoder.  We restrict ourselves to the 
class of static, second order linear plants because it provides a 
nice contrast to the standard VKF decoder presented in 
section II.   

A general second order linear BCI decoder may be 
written as 

	
Figure	2:	Cost	function,	plant,	policy,	with	arrows	connecting	them	
to	illustrate	the	various	types	of	control	theory	problems.	 	Green:	
optimal	forward	control.		Red:	inverse	control.		Blue:	optimal	plant	
design.	

	
	

Figure	1:	Schematic	of	a	BCI	as	a	feedback	control	system.	The	
major	components	of	a	feedback	control	system	are	laid	out	on	top	
of	a	typical	BCI	cursor	control	schematic.			



	 	

 Δ
, (8) 

where the neural firing rates, yt, act as the control signals.  
We have constrained the decoder to be physical, meaning 
position is the integral of velocity, since decoders that 
correspond to simple physical systems seem to be easier to 
control than those that do not [23].   

The free parameters of this decoder are the  matrix 
Hp which governs the spring-like properties of the plant, the 

 matrix Hv which governs the viscous properties of the 
plant, and M, the  matrix which determines how the 
neural activity affects the velocity of the cursor.  By direct 
comparison to (3), we see that for the VKF, , 

 and . 

Of course, (8) does not consider noise, which is inevitable 
in a real BCI system. For example, firing rates are known to 
have a Poisson-like distribution, where the variance of the 
noise depends on the overall mean rate. Other noise could 
come from the recording device, which is independent of the 
neural activity. Including these different kinds of noise in the 
BCI plant, we rewrite the system dynamics as 

 Δ

, . 
(9) 

Here, ∑ , , represents the signal dependent noise, 
where  is a  matrix with 1 at location ,  and 0 
elsewhere, , ~ 0,1  is Gaussian noise, and 0 
controls the scaling of the signal dependent noise terms. This 
makes the firing rates approximately Poisson (but more 
tractable in a forward control setting). The second part, 
~ , , represents the signal independent noise. 

Once the subject learns to control the BCI proficiently, he 
will generate control signals which minimize his internal cost 
function. In this paper, we consider the quadratic cost 
function, which has been widely used in motor learning 
studies [34, 42, 46], as  

 
,…, ,

, 
(10) 

where ≽ 0 and ≻ 0.  Generally speaking, the first term 
corresponds to an accuracy cost (the penalty for not having 
the cursor at the goal), and the second term quantifies the 
total effort exerted during the task. 

We are going to focus on optimizing the dynamics 
portion of this plant, Hp and Hv.  A general algorithm that 
also optimizes M for a given set of recorded neurons is the 
subject of future work.  To find the optimal dynamics ∗ and 
∗, we have 

∗, ∗ argmin
, 0, ∗

∗ ,

argmin
, 0, ∗ min

,…,
,…, ; , . 

(11) 

To find the system with lowest optimal cost, we first need to 
compute the optimal cost for a particular set of parameter 
settings.  This is a classical forward control problem. For a 
linear quadratic model, where the system dynamics is linear 
and the cost function is quadratic, the linear quadratic 
regulator (LQR) can give us the optimal solution via dynamic 
programming. The minimum cost under the optimal policy is 

∗ , tr 0 0 , (12) 

where  and P0 is given by Riccati recursion 
(see [50] and the Appendix for details).  The classic LQR has 
been extended for the signal-dependent noise case [51], for 
which the optimal cost becomes 

∗ , tr 0 0 tr 1

1

0
. (13) 

Details can be found in the Appendix and in [51]. 

Having dealt with the forward control problem, we now 
must optimize this cost over the system parameters  and 

.  For simplicity, we assume the device will be used 
symmetrically, which will lead to symmetry in the dynamics 
such that we can write  and , where  
and  are scalars.  We also know that when 0 there are 
no elastic effects and when 1  there are no damping 
effects, and likely solutions will not stray far from these 
points.  Thus, for this simplified system we can brute-force 
search on ,  around 0,1 . 

Figure 3: Simulation results.  The leftmost three plots are heatmaps of the average optimal costs for BCI systems with different hp and hv values.  Blue 
colors denote relatively small cost, red denotes relatively large cost.  The different heatmaps show optimal costs under different u values (shown at 
top).  The white dot shows the optimal parameters for each value of u, and the white cross shows the cost of the VKF parameters.  The rightmost plot 
shows the  optimal parameters as a function of u. 

Figure 3: Simulation results.  The leftmost three plots are heatmaps of the average optimal costs for BCI systems with different hp and hv values.  Blue 
colors denote relatively small cost, red denotes relatively large cost.  The different heatmaps show optimal costs under different u values (shown at 
top).  The white dot shows the optimal parameters for each value of u, and the white cross shows the cost of the VKF parameters.  The rightmost plot 
shows the  optimal parameters as a function of u. 



	 	

A. Task simulation 

To demonstrate the performance, we can simulate the 
trajectories and costs that would arise with different plant 
parameters during the execution of a center-out / out-center 
point-to-point reaching task with the BCI.  This is a fairly 
typical method of evaluating BCI performance [19].  In this 
task, the subject is required to move a cursor on a 2D 
computer screen from the center of the workspace to a target 
position ∗  within 20 steps, and hold the cursor at ∗ 
for another 20 steps.  Then the subject needs to move 
the cursor back to the origin with 	steps and hold there for 
another  steps.  There are 8 targets uniformly distributed on 
a circle with radius equal to 10. The time interval ∆ is set to 
be 0.1.  We set the signal-dependent noise, , equal to 1 for 
all neurons to mimic Poisson spiking noise.  The variance-
covariance matrix of the signal-independent noise is set to be 
diagonal, i.e.,  with 0.1 .  We simulate 10 
neurons with the preferred direction uniformly distributed on 
the circle and unit modulation depth, such that each column 
of M is the preferred direction of the corresponding neuron.  
The results do not depend strongly on the control-signal 
details.   

To make this task solvable under linear-quadratic 
framework, the state is augmented with the target position ∗ 
as , , ∗  and the cost function is 

 
‖ ∗‖

‖ ‖ . 
(14) 

The first term measures the movement accuracy during the 
holding period, and the second term measures the total effort 
required to finish the task.   controls the balance between 
those two terms within the cost function.  We swept  over a 
range from e-4 to e6. 

B. Simulation results 

The expectation in (7) which determines that the optimal 
parameters will be optimal on average for the expected use of 
the device is handled in the simulation by the target 
distribution: the expectation is computed as the average cost 
over all movements.  With this in mind, it becomes possible 
to compare costs for different parameter settings.  In Fig. 3 
we plot as a heatmap the cost for  and  ranging from -0.5 
to 0.5 and from 0.5 to 1.5, respectively.  The write dot 
indicates the optimal parameters.  We can see that for a large 
range of u, the optimal ∗  is slight less than 0 and the 
optimal ∗ 	is close to 1.  The white cross indicates the typical 
parameters of the VKF, which is more than twice as costly as 
the optimal plant parameters.   

Movement trajectories for three different system 
parameters are shown in Fig. 4.  The distance here is the 
distance of the cursor to the start location, where the target 
location is indicated by the solid black line.  The speed and 
the control signal are defined as vt and Myt projected onto the 
unit vector pointing from the starting position to the target 
position, respectively.  In the top row, hp = 0 and hv = 1 are 
near the optimal parameters, and in the bottom row, hp = 0 
and hv = 0.75 are near the typical parameters of the VKF.  
Comparing those two rows, we can see the distance and 

speed profiles are quite similar, though the VKF has slightly 
more variance in its speed profiles than the optimum plant.  
The major difference between the two algorithms comes from 
the control signals (right-hand column), which indicates that 
the total effort required by the VKF is higher than the effort 
required by the optimum plant.  The VKF dynamics are 
equivalent to adding damping effects to the optimal system.  
For contrast, in the middle row we plot the optimal 
trajectories and control signals from an optimal system with 
some added elastic effects, where hp = 0.25 and hv = 1.  We 
can see that although the control signals profiles for CO and 
OC are symmetric, the distance and speed profiles are not.   
To finish the task under such these parameters settings, not 
only must the total effort increase, but the movement 
accuracy also decreases. 

Finally, it should be noted that the optimal plant 
parameters derived from the control-theoretic approach 
outlined in this paper cannot be achieved with a VKF.  To 
achieve these settings with a VKF, A-KBA=I, meaning that 
either K=0 or B=0 (which would also force K to 0).  
However, in a VKF, M=K (see (3)).  To achieve zero viscous 
damping in the VKF, the control signal input must go to zero. 

VI. CONCLUSION 

Others have considered the dynamical control system 
properties of BCI and their impact on performance [16, 52, 
53].  By treating the brain as an optimal controller, our work 
extends these approaches by introducing a rigorous definition 
of BCI usability, and recasting the BCI design problem as a 
constrained optimization problem over plant parameters.  We 
used this approach to solve for the optimal dynamics of a 2D 
static linear decoder, and discovered that the optimal 
parameters are very close to a system with no spring or 

	

	
Figure	 4:	 Examples	 of	 optimal	 BCI	 cursor	 control	 with	 three	
different	 plants.	 	Left	column:	Distance	 from	 start	 location.	 	 Solid	
black	line	indicates	the	target	distance.		Vertical	dashed	line	shows	
time	 target	 should	 be	 acquired.	 	 Red	 shows	 out‐center	 (OC)	
movements,	 blue	 shows	 center‐out	 (CO)	 movements.	 	 Middle	
column:	 Speed	 profiles	 as	 a	 function	 of	 time.	 	 Right	 column:		
Control	 signals	 as	 a	 function	 of	 time.	 	 Top	 row:	 Optimal	 plant	
parameters.	 	 Middle	 row:	 Plant	 with	 additional	 elastic	 terms.		
Bottom	row:	Plant	with	 additional	 viscous	 terms,	 like	 the	 typical	
VKF.	



	 	

damping qualities.  These results are robust to a large range 
of noise values and effort vs accuracy cost weightings.  

In one sense, these results might seem trivial: the optimal 
2D linear BCI plant is an integrator that provides no 
resistance on the inputs.  This is an intuitive solution given 
that we assumed no bias in the control signals and further 
assumed a minimal effort constraint.  In another sense, the 
results are quite surprising: the optimal dynamics identified 
through this approach to BCI design are qualitatively 
different from those of the typical BCI decoder, the VKF.  In 
fact, the parameters identified with our method fall outside of 
the allowable parameters of a VKF. 

Although the BCI design problem can be recast as a 
constrained optimization problem, solving it is not 
necessarily trivial.  Our simulation provided one solution in a 
situation that permitted brute-force search.  For more 
complicated systems, gradient techniques can be employed, 
but are beyond the scope of this work.  We also leave for 
future work the complicated problem of solving for the 
optimal mapping between neural activity and cursor 
movements.  However, by considering the control-theoretic 
approach to BCI design, we hope to enable fundamental 
improvements in clinical BCI systems. 

APPENDIX 

In this appendix we present the modified Riccati recursion 
used to solve the linear quadratic forward control problem 
with signal dependent noise in our simulation.  For further 
details, see [51]. 

Forward Control Algorithm 
set . 

for 1,… ,0 do 

 

 
 

 The optimal policy: ∗  

end for  
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