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J Neurophysiol 114: 1500–1512, 2015. First published July 1, 2015;
doi:10.1152/jn.00293.2014.—A diversity of signals can be recorded
with extracellular electrodes. It remains unclear whether different
signal types convey similar or different information and whether they
capture the same or different underlying neural phenomena. Some
researchers focus on spiking activity, while others examine local field
potentials, and still others posit that these are fundamentally the same
signals. We examined the similarities and differences in the informa-
tion contained in four signal types recorded simultaneously from
multielectrode arrays implanted in primary motor cortex: well-iso-
lated action potentials from putative single units, multiunit threshold
crossings, and local field potentials (LFPs) at two distinct frequency
bands. We quantified the tuning of these signal types to kinematic
parameters of reaching movements. We found 1) threshold crossing
activity is not a proxy for single-unit activity; 2) when examined on
individual electrodes, threshold crossing activity more closely resem-
bles LFP activity at frequencies between 100 and 300 Hz than it does
single-unit activity; 3) when examined across multiple electrodes,
threshold crossing activity and LFP integrate neural activity at differ-
ent spatial scales; and 4) LFP power in the “beta band” (between 10
and 40 Hz) is a reliable indicator of movement onset but does not
encode kinematic features on an instant-by-instant basis. These results
show that the diverse signals recorded from extracellular electrodes
provide somewhat distinct and complementary information. It may be
that these signal types arise from biological phenomena that are
partially distinct. These results also have practical implications for
harnessing richer signals to improve brain-machine interface control.
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THE FIRST ELECTRICAL SIGNALS recorded from the brain were
oscillatory in nature (Berger 1929). With the advent of sharp
extracellular electrodes, action potentials from single neurons
became another dominant signal source to extract information
about brain function. Today, it is possible to simultaneously
record single-unit activity (SUA; the times of action potentials
from well-isolated neurons), threshold crossings (TCs; times
when the high-band-pass-filtered voltage signal crosses a pre-
defined threshold), and local field potentials (LFPs; low-fre-

quency power fluctuations of the raw voltage signal). LFP
signals can be further subdivided into multiple frequency
bands. To maximize our ability to infer the neural basis of
cognitive processes and behaviors, we should take advantage
of every signal modality at our disposal. To do this, it is first
necessary to establish the differences and similarities among
these signal types during particular behavioral tasks.

We recorded broadband signals from multielectrode arrays
implanted in primary motor cortex (M1) while two Rhesus
monkeys performed a center-out reaching task. We compared
the relationship to movement parameters borne by SUA, TC,
and LFP in a high- and a low-frequency band that exhibited
significant power modulation during our tasks. Our objectives
were, first, to infer whether these signal modalities reflect the
same or different information about kinematics, and second, to
support the possibility of improving brain-machine interface
(BMI) performance by controlling different aspects of BMI
movements using different signal modalities. SUA in M1
relates to various kinematic parameters (see Riehle and Vaadia
2005 for a comprehensive review). It has been assumed that
TC is a noisy proxy of SUA, conveying similar information
(Fraser et al. 2009; Markowitz et al. 2011; Foster et al. 2011;
Christie et al. 2014). Here, we examine this idea closely.

Previous studies have investigated the relationship between
reaching kinematics and LFP (Mehring et al. 2003; Rickert et
al. 2005; Asher et al. 2007; Bansal et al. 2011, 2012; Heldman
et al. 2006; Zhuang et al. 2010a,2010b; Flint et al. 2012), as
well as TC (Stark and Abeles 2007; Markowitz et al. 2011;
Foster et al. 2011). However, SUA, TC, and LFP have seldom
been directly compared in M1 recordings. Thus the important
issue of differences and similarities among them cannot be
firmly established based on the existing studies.

We examined each signal’s encoding of four kinematic
parameters: direction, position, speed, and velocity. Of these
four parameters, we find find that SUA encodes direction more
strongly than the other parameters, TC best encodes speed,
LFPH (“high gamma,” 100–300 Hz) also best encodes speed,
and LFPL (“beta,” 10–40 Hz) activity is suppressed when
movement begins, but it does not bear a closer relationship to
movement parameters. Thus TC appears to be more closely
related to LFPH than it is to SUA. However, we find that TC
differs from LFPH in how it is correlated across electrodes.
Signals in the LFPH band are correlated between nearby
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electrodes, more so than are TC signals. Taken together, our
findings indicate that the four signals carry distinct information
and may therefore have distinct biological origins. This implies
that improved BMI performance may be achieved by extract-
ing direction, speed, and go/no-go information from different
signal sources recorded on the same sharp electrodes.

METHODS

Behavioral task. Two Rhesus monkeys performed a center-out
reaching task in a two-dimensional virtual reality environment. Data
analyzed here are from five sessions with monkey J and six sessions
with monkey L. The animals were comfortably seated in a primate
chair, in front of mirrors for reflecting a computer screen, with one
arm restrained and the other free to move behind the screen. A
motion-tracking system (Phasespace) was used to track the hand
position in real time (resolution: 120 Hz, �1 mm). The recorded hand
position was used to animate a cursor on the computer screen in real
time, providing the animal feedback about the position of the hand.
The workspace was a two-dimensional frontoparallel plane; the depth
component of hand movements was ignored. A LabVIEW-based
custom computer program controlled the behavioral task progression.
At the beginning of every trial, a center target appeared and the animal
had to move its hand so that the cursor location on the screen
overlapped with the center target. A peripheral target appeared 200–
400 ms later, cueing the animal to reach so that the cursor overlapped
with the peripheral target. Successful trials ended with a water reward.
If the movement took longer than 800 ms, the trial was deemed
unsuccessful. Analyses were conducted using only successful trials.

A 96-electrode silicon array (Blackrock Microsystems) was chron-
ically implanted in the arm region of the contralateral M1. Neural
activity (SUA, TC, and LFP, see below) was recorded using a PZ2
system (Tucker-Davis Technologies). All procedures were approved
by the University of Pittsburgh’s Institutional Animal Care and Use
Committee.

Neural data processing. The voltage trace recorded from each
electrode was processed to obtain SUA, multiunit TCs, and LFP data.
The processing steps are summarized in Fig. 1 and detailed below.

Electrode voltage signals (Fig. 1A) were band-pass filtered (monkey
J: 600-6,000 Hz; monkey L: 300-5,000 Hz) to obtain SUA and TC
signals (Fig. 1C). Band-pass filtering was performed using a zero-
phase filter to eliminate filter delays, and edge effects were minimized
by padding signals with their reflection in time. Eliminating filter
delays was essential, since we compared how neural signals related to
kinematics at various lags. SUA was obtained by spike-sorting the
waveforms offline using either window discriminators or principal-
component analysis-based clustering (custom software written in
Matlab). We used a total of 122 single units in this study, combined
across multiple recording sessions. TC event times were obtained
using a constant threshold set at three standard deviations below the
mean of the voltage trace for each channel. This technique is similar
to that used in electromyography studies when relatively few motor
units are present in the voltage trace (Viviani and Terzuolo 1973;
Soechting et al. 1978; Burton and Onoda 1978). SUA and TC were
converted to firing rates by counting TC events in 100-ms bins and
dividing by the bin width. We used partially overlapping bins (50-ms
overlap) to smooth the data; but results were similar with nonover-
lapping bins.

Electrode voltage signals (Fig. 1A) were also band-pass filtered
(monkey J: 0.3–500 Hz; monkey L: 10–500 Hz) and stored at a
sampling frequency of 1,220 Hz to obtain LFP activity (Fig. 1B). The
LFP power-spectral density (PSD) was computed using a 100-ms
window, in steps of 50 ms and at frequency resolutions of 1 and 5 Hz
(mem library from BCI2000 Project; Schalk et al. 2004). We con-
ducted an Akaike’s information criterion analysis and determined that
an autoregressive model order of 30 was appropriate for our data. We
verified our selection using both synthetic and real data. Results using

1 Hz were similar to those using 5 Hz, and all further analyses
reported here were computed at a 5-Hz frequency resolution. In our
encoding analyses, we used linear regression models that make the
assumption that errors are normally distributed. To match this as-
sumption as closely as possible, we conducted all analyses on the
logarithm of the LFP power values in each frequency band.

We investigated encoding of two PSD frequency bands. For mon-
key J: 15–40 Hz (LFPL, corresponding to the “beta band” in other
studies) and 100–300 Hz (LFPH); and for monkey L: 15–50 Hz
(LFPL) and 100–300 Hz (LFPH). These bands were chosen based on
an examination of both single-channel and channel-averaged normal-
ized PSD plots, since they were the bands that demonstrated similar
task-related modulation. We also found that the frequency bands
within the LFPL and LFPH bands tended to show similar encoding
properties and signal correlation patterns (see Figs. 2 and 3). Because
task-related modulation and regression R2 values were significantly
lower for the 40- to 90-Hz band, compared with the other frequency
bands, it was not included in further analyses. Due to noise artifacts in
the frequency band 28–32 Hz for monkey J, these frequencies were
notch-filtered before computing the LFP PSD.

Fig. 1. Neural signal processing. A: raw voltage trace recorded from a single
electrode. B: signal processing cascade for local field potentials (LFPs).
Power-spectral density (PSD) is computed as a function of time and then log
transformed. Separation of LFP bands is clearer when the PSD is consecutively
z-scored relative to an intertrial period (Note that the PSD is only z-scored for
visualization purposes). C: signal processing cascade for threshold crossings
(TC) and single unit activity (SUA). A voltage-based threshold is used to
identify TC events. TC spikes and the corresponding waveforms are shown.
TC spikes are classified as either a single unit (SU) or noise. LFPL and LFPH,
low- and high-frequency LFP.
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When averaging the PSD of individual LFP frequencies, we
expect the variance of the resulting signal to behave according to
the following calculation. Suppose X1, X2, ..., XM represent the
PSD of M individual LFP frequencies, each with variance �2. With
the use of the variance properties Var(X � Y) � Var(X) � Var(Y)
(when X, Y are independent) and Var(cX) � c2Var(X), a simple
calculation shows that the variance of their average should be:
Var([X1 � X2 � ... � XM]/M) � [Var(X1) � Var(X2) � ... �
Var(XM)]/M2 � M�2/M2 � �2/M. Our empirical results match this
theoretical calculation (see Fig. 13).

Encoding models. Many previous studies have suggested that SUA
contains information about hand position, velocity, direction, and
speed (for example: Moran and Schwartz 1999; Georgopoulos et al.
1986; Fu et al. 1995; Paninski et al. 2004; Paninski 2004; Riehle and
Vaadia 2005). To systematically investigate how SUA, TC, and LFP
relate to these kinematic parameters in our data, we regressed neural
activity against kinematics and compared how well the kinematics
accounted for the variance of the neural activity. We considered 4
encoding models that included 1 model per kinematic variable, and 6
additional models for certain additive combinations, for a total of 10
regression models. The four basic regression models were:

y � b0 � bpxpx � bpypy � noise �P : position� (1)

y � b0 � bdxdx � bdydy � noise �D : direction� (2)

y � b0 � bvxvx � bvyvy � noise �V : velocity� (3)

y � b0 � bss � noise �S : speed� (4)

where y is one of SUA firing rate (measured in spikes per second), TC
firing rate (spikes per second), or LFP power (that is, log-transformed
PSD, averaged across a given frequency band, as explained in RE-
SULTS); (px, py) is the hand position; (vx, vy) is the hand velocity; (dx,
dy) is the direction of hand movement; and s is the hand speed. Note
that direction differs from velocity in that direction is a unit vector but
the magnitude of the velocity vector is the hand’s speed. The six
additive combination models we tested were P � D, P � S, D � S,
P � V, V � S, and P � V � S.

Signal and noise correlations. The variance of a neural signal y can
be decomposed to signal and noise, where “signal” is defined as the
variance explained by a set of covariates c (in our case kinematics)
and “noise” is defined as the variance that remains after accounting for
those covariates. This decomposition is given by the law of total
variance: Var(y) � Var(E(y|c)) � E[Var(y|c)), where Var(E(y|c)) is
the signal variance and E(Var(y|c)) is the noise variance. The noise
variance may be related to covariates other than the ones we included
in c. From these quantities, we also computed the signal-to-noise ratio
(SNR) as the ratio of the signal variance to the noise variance.

For every encoding model which used a neural signal y, we used
the encoding model estimate ŷ to calculate the signal variance as
Var(E(y|c)) � Var(ŷ), and the residuals y � ŷ to calculate the noise
variance as E[Var(y|c)] � Var(y � ŷ).

Signal and noise covariance describe how two neural signals
relate to a given set of covariates and are defined exactly the same
way, with Cov replacing Var in the equation above. Finally, we
also compute the signal and noise correlations by normalizing the
signal and noise covariances by the appropriate standard devia-
tions. Thus the signal correlation becomes Cov�E�y1�c�,E
�y2�c����Var�E�y1�c���Var�E�y2�c�� and the noise correlation

becomes E�Cov�y1�c,y2�c����E�Var�y1�c���E�Var�y2�c�� . It
should be noted that while the signal and average noise covariances
sum to the total covariance, this does not hold true for signal and
noise correlations, since they are normalized by different factors.
We computed the signal covariance between pairs of neural sig-
nals, y1 and y2, as Cov(ŷ1,ŷ2).

Using the encoding models in the previous section, we computed
the following statistics on each signal type: 1) coefficient of determi-

nation (R2) per electrode; 2) SNR per electrode; 3) signal correlation
between electrodes; and 4) noise correlation between electrodes. For
LFP signals, we also computed the signal and noise covariances
between individual frequency bands on the same channel and across
channels. We used individual LFP PSD frequency bands from 1 to
300 Hz at a 5-Hz resolution (i.e., 1–5, 5–10, ..., 295–300 Hz).

RESULTS

Trial-averaged LFP is not representative of single-trial
LFP. Previous studies related trial-averaged LFPs to kinematic
parameters; hence we begin with a qualitative analysis of
encoding properties of the averaged LFP signal. Figure 2
shows the time-resolved PSD for the LFP on one example
electrode, averaged across repeated reaches to each peripheral
target. Hand positions from representative reaches are plotted
at the center, and averaged speed profiles are superimposed on
the PSD plots. The LFP on this electrode appears to encode
both direction and speed information. The LFP power in the
high-frequency range (above �100 Hz, LFPH) has a larger
increase to rightward targets than in other directions. Across all
reach directions, there is a tendency for the LFPH power to
peak just before the peak speed. The LFPL band shows a clear
suppression just before movement onset across all reach
directions.

LFP activity during single trials is not necessarily reflective
of the mean activity across trials. Figure 3 presents a compar-
ison between trial-averaged (Fig. 3A) and single-trial (Fig. 3B)
LFP PSD modulation for one example signal. While the
modulation of the trial-averaged LFP power is apparent from
visual inspection, it is much harder to detect a significant
relationship between LFP power and kinematics in the single-
trial data. This illustrates the importance of using a fine
timescale when investigating in detail the properties of signals
recorded from motor cortex.

Fig. 2. Trial-averaged LFP shows both directional and speed modulation:
time-frequency PSD for the LFP from 1 example electrode, averaged over
repeated reaches to the 8 targets. The data are z-scored using baseline data
collected between trials (not shown). The averaged hand speed profile is
superimposed in white, and the go cue is indicated by a red vertical line. Hand
position trajectories from 10 randomly chosen trials per target are shown at the
center. This channel demonstrated simultaneous speed and directional tuning.
AU, arbitrary units.
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Kinematic parameters are encoded differently among the
signal types. Our next goal was to investigate how signals of
each modality related to the moment-by-moment changes in
kinematic parameters (neural signals and kinematics all binned
at 100-ms resolution). To quantify our results, we computed
the coefficient of determination (R2) between each signal
modality (SUA, TC, and both bands of LFP) and a full
kinematic model consisting of position, velocity, and speed
terms. We computed the R2 at several different lags between
kinematics and neural activity, ranging from �250 to 300 ms
in 50-ms steps, where the negative sign indicates that neural
activity precedes the kinematics. Figure 4 summarizes the
resulting regression R2 distributions across signals using data
from a typical session. Figure 4, top, shows R2 box plots as a
function of lag, across all signals; Fig. 4, bottom, shows the
corresponding optimal lags, defined as the lag at which the R2

value was the highest for each channel and neural signal. Only
significant regressions (determined by F-statistic P values with

� � 0.05) were included in Fig. 4, with the most common
optimal lags occurring around �100 to �50 ms. The R2

distributions across all neural modalities did not change much
when evaluated at lags shifted by 50 to 100 ms backwards or
forwards in time relative to the optimal lag, indicating that the
regression results were not sensitive to the exact choice of a
lag. We therefore chose a fixed �100-ms lag for all neural
modalities in all following analyses. We also conducted anal-
yses at lags of �150 and �50 ms. Results were similar, and
thus data are shown only for the �100-ms lag.

To explore how the different neural modalities encode reach
kinematics, we fit 10 regression models to every SUA, TC, and
LFP signal. The regression models included one model for
each kinematic parameter (position, velocity, direction, and
speed) and six more models for their additive combinations
(see METHODS for details). Figure 5 summarizes our findings
from two representative recording sessions (with a total of
3,694 reach trials). Each box plot describes the R2 distribution,

Fig. 3. Tuning of instantaneous LFP (at a
resolution of 100 ms) is hard to detect visu-
ally: PSD for the LFP from 1 example elec-
trode. A: PSD averaged across all trials to 2
adjacent reach targets. Speed encoding is
evident by the facilitation of the LFPH band.
The averaged speed profile is superimposed
in white. B: instantaneous PSDs for 1 of the
trials (selected arbitrarily), which were used
to compile the averaged PSD in A. Tuning is
not evident in this or any other single-trial
PSD.

Fig. 4. Top: distribution of regression R2 across
lags: The full regression model (containing terms
related to position, velocity, and speed) was fit
using lags from �250 to 300-ms at 50-ms steps,
to every neural signal modality (SUA, TC, LFPH,
and LFPL). The box plots summarize R2 values
across all cases with significant regressions. The
highest mean population R2 values for all neural
modalities are for causal lags in the range of
(�50)-(�150)ms. R2 values are the lowest for
the LFPL band, indicating it is not tuned to these
kinematic variables. The box plots describe the 5,
25, 75, and 95th R2 percentiles, as well as the
mean (black) and median (red) R2 values. Bot-
tom: optimal lag histograms: distribution of lags
at which maximal R2 values occurred for every
neural signal modality. Optimal lags for SUA,
TC, and LFPH are similar, although LFPH opti-
mal lags are more homogeneous across signals.
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across all channels, grouped by neural signal modality and
organized by regression model, allowing comparisons of the
types of information encoded by the different neural modalities. It
should be noted that the R2 values in Fig. 5 are lower than we
observed with averaged data, because we used single-trial data at
100-ms resolution. The 10 encoding models we considered are
ordered on the x-axis of Fig. 5 according to their mean R2 for the
SUA data; that ordering is preserved for the other three signal
modalities to aid visual comparison.

Six trends are evident. 1) In agreement with previously
published results, SUA signals encode all kinematic parame-
ters, with the highest R2 for velocity, followed by speed,
position, and direction. 2) All signal modalities exhibit a
pronounced improvement in model fit when speed is added to
the model (box plots for models including speed are colored
blue in Fig. 5). 3) Based on the ordering and magnitude of the
model fits, TC more closely resembles LFPH than SUA. In-
deed, when we compared the R2 distributions for the full model
(position, velocity, and speed) across SUA, TC, and LFPH,
visual inspection of the quantile-quantile plots showed that the
TC R2 distribution was more similar to the LFPH distribution
than to the SUA distribution: a two-sample Kolmogorov-
Smirnov test showed that the TC R2 distribution was signifi-
cantly different from the SUA distribution (P � 0.008), but not
significantly different from the LFPH distribution (P � 0.06).
4) TCs signals provide the best encoding among the four signal
modalities, at least when speed is included in the model. 5)
LFPL provides the poorest encoding. Finally, 6) most of these
distributions exhibit long tails and have means that are higher
than medians. This indicates that a subset of channels (�20%)
provide the best encoding of kinematics.

Figure 6 displays the same R2 distribution box plots, now
grouped by model type and organized by signal modality. We

wish to highlight two trends evident in the data when viewed
in this manner. First, for the position, direction, and velocity
models, the mean R2 was highest for SUA and decreased in this
order: TC to LFPH then LFPL. The median R2 showed a
different trend, and this difference between mean and median
indicates that the SUA R2 distributions are skewed in the
positive direction compared with TC and LFPH. In other
words, the top 25% of single units have higher R2 compared
with the top 25% of TC or LFPH signals and therefore encode
kinematics better. Second, the speed model showed a different
trend, with the best encoding for LFPH (judged by either mean
or median), with TC a close second, and both SUA and LFPL
showing poorer encoding of speed. These trends were quanti-
fied using Kolmogorov-Smirnov tests: SUA and TC R2 distri-
butions for position, direction, and velocity models were not
significantly different (P � 0.26, 0.12, and 0.62); but both were
significantly different from the LFPH distributions (P � 0.003,
0.007, and 0.001) and had higher means than the means for
LFPH signals. In contrast, mean R2 values for the speed model
increased from SUA to TC and LFPH, and comparison of the
R2 distributions of the speed model across all neural modalities
showed statistically significant differences.

To study if SUA, TC, and LFPH encode the same directional
information, we compared their preferred directions (PDs). We
used the full model (position, velocity, and speed) to account
for the prominent speed encoding present in all neural modal-
ities. We estimated PDs by normalizing the velocity coeffi-
cients (bvx, bvy) and representing this vector as an angle around
the unit circle (between �180 and �180°). Figure 7, diagonal
plots, shows the estimated PDs for SUA, TC, and LFPH, with
one radial line for each channel. PD grey scale intensities vary
by the regression R2 values from light gray (low R2) to black
(high R2). Figure 7, bottom triangular portion, compares the

Fig. 5. Distribution of regression R2 values across
regression models: All regression models (see METH-
ODS) were fit to all neural signals, using a fixed
causal (�100-ms) lag (that is, neural data precedes
kinematics). Regression models included position
(P), velocity (V), direction (D), and speed (S); or
their additive combinations, e.g., P � V � S, rep-
resent a model that additively includes position,
velocity, and speed. All box plots for every neural
modality are sorted by the SUA mean R2 values.
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similarity of PDs for the different signal modalities. It contains
scatter plots of PDs for different neural modalities on the
same electrodes. To allow proper comparisons, we wrapped
the PDs so that every data point lies as close to the equality
line as possible, and therefore, some PDs extend beyond the
�180 to �180° range. These scatter plots demonstrate that
TC PDs are better correlated with LFPH PDs (	 � 0.77) than
with SUA PDs (	 � 0.41). A comparison of the regression
R2 from which PDs were estimated can be found in Fig. 7,

top triangular portion. These demonstrate that TC regres-
sion R2 are better correlated with LFPH R2 (	 � 0.79) than
with SUA R2 (	 � 0.35).

The signal types are correlated differently across cortical
tissue. We examined how different signal types were organized
across the cortical tissue. To do this, we computed the corre-
lation between signals across electrodes. Figure 8 shows his-
tograms for correlations computed for all pairs of SUA-LFPH
and TC-LFPH originating from the same electrode. The mean

Fig. 6. Distribution of regression R2 values across
neural modalities: Four regression models were fit to
all neural modalities: position (P), direction (D), ve-
locity (V) and speed (S). The data from Fig. 5 are
replotted here but now grouped by model type rather
than signal modality. Position, direction, and velocity
information decreases across the neural modalities
(SUA � TC � LFPH). Speed information increases
across neural modalities (SUA � TC � LFPH).

Fig. 7. Comparison of preferred directions
(PDs) and R2 between neural signals on the
same channels. Diagonal: PDs for SUA, TC,
and LFPH signals. Right top half: Comparison
of regression R2 between neural signals. Left
bottom half: Comparison of PDs between neu-
ral signals. The correlation coefficients be-
tween the R2 and PDs are shown at the top of
every plot.
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noise correlation for SUA-LFPH pairs was smaller than for
TC-LFPH pairs but not significantly different.

To understand the spatial integration properties of our sig-
nals, we examined the signal and noise correlations between
similar modalities recorded on all pairs of electrodes across the
recording array. Figure 9 shows the signal and noise correla-
tions for all TC and LFPH signal pairs. Every color matrix
contains all correlations (either noise in Fig. 9A or signal in
Fig. 9, B and C) between all pairs of signals on the array, sorted
by their distances from one of the array corners. We observed
that LFPH recordings have higher noise correlation than do TC
recordings. Because most signal types encode speed in a
positive-going manner (i.e., increases in speed tend to lead to
increased SUA, TC, and LFPH activity), we computed signal
correlations for models with speed (P � V � S) as well as for
models without speed (P � V). With the use of a position and
velocity only encoding model, LFPH pairs also show higher
signal correlation compared with TC pairs (Fig. 9B). TC pairs
show a more heterogeneous correlation pattern compared with
LFPH pairs. That trend is even stronger when speed is added to
the encoding model (Fig. 9C), as the LFPH signal correlation
map becomes even more uniform.

We extended our spatial correlation analysis to all LFP
frequencies between 1 and 300 Hz. Results are shown in

Fig. 10. We computed the signal and noise correlations
between all pairs of electrodes for each frequency band.
Instead of displaying one color matrix per frequency band,
we summarize the data with one curve for every frequency
band. Each point on a curve represents the average correla-
tion between all electrodes that are at a certain distance from
each other. Correlation strength is inversely related to fre-
quency: correlations are strong at low frequencies and
weaken as the frequency increases. Noise correlations decay
with distance, while signal correlations do not.

Figure 10 shows that TC noise correlation is very low
(�0.1), while noise correlations for all frequencies in LFPH

(100–300 Hz) range from 0.1 to 0.4. Signal correlations for TC
are also low (0.2), compared with 0.3 to 0.8 for LFPH frequen-
cies. TC signal and noise correlations are as low as or lower
than the ones for the highest LFP frequency we examined
(290–300 Hz). We further evaluated the fidelity of encoding by
SUA, TC, and LFPH on the same electrode by quantifying the
SNR of the full linear model fit (P � V � S). These SNR
values are plotted against one another in Fig. 11. We found that
92% of TC and 77% of SUA signals showed better SNR than
the LFPH signals on the same electrode. More TC signals have
better SNR compared with SUA signals due to the more robust
TC speed encoding. It is also important to note that for all
signal modalities, noise variance was much higher than signal
variance. The mean (	SE) percentages of noise variance out of
the total variance were 93 	 0.8% for SUA, 92 	 0.6% for TC
and 93 	 0.4% for LFPH.

LFP can be averaged across frequencies to improve SNR.
Because trial-averaged LFPs usually exhibit correlated modu-
lations in neighboring frequency bands (see Fig. 3A), it is
common practice to average the LFP across frequencies, pre-
sumably to smooth and “clean” the signal. Single-trial LFPs
appear by eye to be more heterogeneous across frequency than
trial-averaged LFPs (e.g., Fig. 3B). We examined whether LFP
should be averaged across frequency bands. Averaging LFP
across frequency bands would only be beneficial if those
frequency bands encoded similar information but did not have
correlated noise. We computed the signal and noise correlation
between individual frequency bands of every LFP signal. For
this analysis we used the position-velocity (P � V) encoding
model and data from an entire session. We show an example of
correlations for a typical electrode in Fig. 12. It is clear that
noise is mostly independent across frequencies, exhibiting
weak correlation for frequency bands �10 Hz apart. On the
other hand, the signal correlation is high across the two
frequency bands we used in this study: LFPL (15–40 Hz) and
LFPH (100- 300 Hz). These results indicate that it should be
beneficial to average single-trial LFP across these two fre-
quency bands, rather than treat all frequency bands indepen-
dently when studying how kinematic information is encoded in
cortex.

If averaging across frequency bins boosts signal, then averag-
ing the LFP across several 10-Hz frequency bins will show an
enhanced SNR compared with the 10-Hz bins taken individually.
We tested this separately for the LFPL and LFPH bands (Fig. 13).
In the LFPH band, averaging the LFP power across frequency bins
before computing the SNR (ordinate) yields higher values than
computing the SNR in each frequency bin first and then averaging
(abscissa), by roughly a factor of �21 (the square root of the

Fig. 8. SUA and TC signals show different noise correlations with LFPH

signals on the same electrode: Histograms of noise correlations between TC
and LFPH signals (A) and SUA and LFPH signals (B). All signal pairs
originated on the same electrode. Correlations were computed using the full
model that included position, velocity, and speed. The mean noise correlation
for SUA-LFPH was smaller than the mean TC-LFPH noise correlation but not
significantly different.
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number of frequencies in LFPH). When we repeated this
analysis at 5-Hz resolution, the SNR of the average band did
not continue to improve at the same rate (data not shown). This
indicates that in the frequency range of LFPH neural noise is
correlated at frequency bins �10 Hz and becomes more inde-
pendent at frequency bins of 10 Hz or wider. For the LFPL
band, averaging across frequency bins did not boost the signal
as much. Inspection of the data indicate this is primarily
because there is some heterogeneity in the LFPL band edges:
while many (�40%) channels exhibit common signal modu-
lation from 10 to 40 Hz, in other channels these edges are
slightly higher or lower. The LFPL band heterogeneity is

interesting, but due to its relatively poor kinematic encoding,
we did not pursue it further here.

DISCUSSION

Our ability to simultaneously record the activity of single
neurons has increased steadily with time (Stevenson and Kord-
ing 2011) and multielectrode recording arrays currently allows
us to record from several hundred neurons at the same time
(Collinger et al. 2013; Ifft et al. 2013; Schwarz et al. 2014).
However, this still only represents a small fraction of the total
number of neurons in any given brain area. We are far from the

Fig. 9. LFPH signals show different signal and noise correlation population patterns compared with TC signals: In all A–C, signals are ordered according to their
distance from the left-top electrode in the array. Their distances from that electrode are indicated on the noise correlation matrices. Both noise and signal
correlation were computed for every pair of signals (within the same modality) across the recording array. The average correlation across all pairs is indicated
above the color matrices by 
. A: noise correlations between all pairs of LFPH signals (top) and TC signals (bottom). LFPH signals have higher noise correlation
compared with TC signals. B: signal correlations for a position and velocity model between all pairs of LFPH signals and TC signals. LFPH signals have more
homogeneous signal correlation compared with TC signals. C: same as B but signal correlation is computed for a position, velocity, and speed model. LFPH signal
correlations are dominated by speed, as indicated by the more homogeneous colors, but this is less true for TC signal correlations. t-Tests showed that in A–C,
the top triangular values from the LFPH and TC matrices are statistically significantly different (P � 10�10). There is no evident spatial organization in A–C.

Fig. 10. Noise correlations decay with distance
at a higher rate for higher frequencies. Signal
correlations depend on frequency but not dis-
tance. Signal and noise correlation were com-
puted between all pairs of signals on the array
and were grouped as function of distance. The
average signal and noise correlations at a certain
distance are shown for different frequency bands.
Both signal and noise correlations decrease the
higher the frequency. Noise correlations also de-
cay with distance. TC signal and noise correla-
tions are lower than the ones for the highest LFP
frequency band (290–300 Hz).
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ultimate goal of recording from all the neurons in a complete
mammalian neural circuit (Insel et al. 2013). It is therefore of
critical importance to extract as much information as possible
using the available recording resources.

Extracellular electrodes inserted in the cerebral cortex mea-
sure a voltage signal composed of spikes and dendritic poten-
tials. Some spikes are large, originating from larger neurons
that are close to the electrode tip, and are easily discriminated
as SUA. Smaller neurons, and neurons further away from the
electrode tip, contribute smaller spikes which are harder to
discriminate and are commonly analyzed together as multiunit
activity. In our data, TCs surely included contributions from
well-isolated single neurons, nonisolatable multiunit activity,
and fluctuations that could not be clearly identified as multiunit
activity. Dendritic potentials likely also contribute to the volt-
age trace, mostly at low frequencies (Buzsáki et al. 2012). Our
goal was to characterize the differences and similarities be-
tween signals that can be extracted from the extracellular
voltage trace during a behavioral task. In this discussion, we
focus on the implications of our results for our understanding
of encoding (that is, the native tuning properties of primary
motor cortex), the biological underpinnings of extracellular
voltage signals, and decoding (that is, the use of motor cortex
signals for BMI control).

Kinematic parameters in M1 are encoded differently by
different neural signal modalities. We compared the encoding
properties of three types of signals commonly extracted from
intracortical electrode recordings in M1: SUA, TC activity, and
LFP activity in two distinct frequency bands. To investigate
how they represent kinematic parameters on a moment by
moment basis, we fit a set of encoding models that included the
hand’s position, direction, velocity, speed, and their additive
combinations. We fit these models to single-trial neural and
kinematic data binned at 100-ms resolution.

We observed a progression in the encoding properties from
SUA through TC to LFPH (100–300 Hz), with directional
signals showing stronger encoding among the single units and
speed signals showing stronger encoding in LFPH. SUA is the
only modality for which the median R2 for velocity was larger
than the median R2 for speed. Of all the signal types we
considered, LFPH shows the strongest encoding of speed rel-
ative to velocity. TC is intermediate between these two. Pro-
gressing from SUA through TC to LFPH, the median R2 for all
models that include directional signals (velocity, direction, and
position) shows a gradual decrease, while the median R2 for
models that include speed shows a gradual increase. For all
signal modalities, the majority of the information about any
particular kinematic feature is best represented by a relatively

Fig. 11. SUA and TC signals have higher signal-
to-noise ratio (SNR) compared with LFPH signals.
SNR comparison between SUA/TC and LFPH

signals on the same channels for the P � V � S
model: 95 (77%) SUA signals show better SNR
compared with LFPH signals; 177 (92%) TC sig-
nals show better SNR compared with LFPH sig-
nals. This difference is likely due to the more
robust speed encoding in TC compared to SUA.

Fig. 12. Signal, but not noise, is correlated across single LFP signal frequency bands: Example signal and noise correlations across frequencies for a single LFP
signal. Other channels demonstrated similar properties. Noise is mostly independent across frequencies, while the signal is encoded similarly across frequencies
in certain bands. A: noise correlation significantly drops across frequencies that are spaced 10–20 Hz apart from each other. B: signal correlation stays high across
certain frequencies bands, indicating that they encode signals similarly. Here, a position-velocity encoding model is shown (see METHODS for details) to
demonstrate that LFP signals are modulated by velocity in addition to speed. Signal correlation was even higher when using a position-velocity- speed model.
At left and right, the 1st row and column represent the 1- to 10-Hz frequency band and the last row and column represent the 290- to 30-Hz frequency band.
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small fraction of channels (�20%), as indicated by the long
whiskers in the box plots of Figs. 5 and 6.

We further evaluated the decay in noise and signal correla-
tions as a function of distance across the cortical tissue under
the recording array and, in the case of LFP, frequency within
a single electrode. LFPL showed a high correlation across the
cortical tissue. At higher frequencies, LFP correlation decayed
more sharply across the cortical tissue. TC activity shows
relatively weak noise correlation even on neighboring elec-
trodes, indicating a very local signal (� 200-
m radius)
source. In contrast, LFP showed a more gradual decline in
noise correlation with distance: in the 50- to 100-Hz range,
LFP noise correlations were still �0.2 even at the largest
distances tested (�3 mm). We interpret these results to mean
that these signal modalities convey information that is present
at different spatial scales within the cortex.

A vast body of literature relates motor cortex SUA to various
kinematic parameters during reaching movements (e.g., Geor-
gopoulos et al. 1982; Scott and Kalaska 1995; Moran and
Schwartz 1999; Churchland and Shenoy 2007; Kakei et al.
1999; Alexander and Crutcher 1990; Hatsopoulos et al. 2007;
Paninski et al. 2004). Our results are in overall agreement with
these findings. In particular, we see a prominent representation
of velocity in SUA and a weaker representation of speed. There
is heterogeneous encoding of all of the kinematic variables
across our population, as evident by the long upper tails for the
distributions in Fig. 6. Also in agreement with previous studies
(e.g., Moran and Schwartz 1999), the average optimal lag
between neural activity and kinematic variables was 100 ms
(Fig. 4).

Different neural origins for different neural signal
modalities. Movements are ultimately driven by action poten-
tials conveying the collective activity of millions of cortical
neurons. Voltage traces recorded using extracellular electrodes
comprise a mixture of spiking activity and the postsynaptic
potentials that give rise to spiking. We processed those voltage
traces using two different nonlinear filters, the first to extract
SUA/TC and the second to extract LFP (see Fig. 1). These two
processing procedures provide us with two different, comple-
mentary views of the underlying neural process.

SUA activity, by definition, stems from the action of single
neurons. TC signals likely reflect that activity of very local
neurons, almost certainly numbering �10, given the thresholds
used in this study. The source of the LFP signal is not yet
agreed upon. Historically, LFPs have been considered to rep-
resent mainly synaptic activity and membrane-potential-de-
rived voltage fluctuations (reviewed in Buzsáki et al. 2012).
However, recent evidence suggests that spiking activity can
affect the LFP power at all frequencies and that these effects
cannot be simply removed by low-pass filtering the raw voltage
signal (Waldert et al. 2013). We believe that our LFPH signals
included both spikes from local neurons and spikes from very
distant neurons. The spatial scale of LFP signals is not well
known and is likely to depend on frequency (Leopold et al.
2003; Einevoll et al. 2013). However, given that the 95th
percentile of the R2 distribution for velocity of the LFPH
signals is nearly half that of the TC signals (Fig. 6), it is likely
that LFPH integrates information over a substantially broader
range than TC, sufficient to dilute the velocity tuning.

In addition to being tuned to movement direction, most
neurons in motor cortex are also positively (albeit weakly)
tuned to speed, meaning that increased movement speed will
result in increased average firing rate (Moran and Schwartz
1999). However, the directional tuning of nearby neurons is
only weakly correlated (Naselaris et al. 2006). Therefore, as
signals from multiple neurons are combined (as is the case for
TC and LFPH), directional tuning should weaken while speed
tuning strengthens. Indeed, we found that LFPH signals en-
coded mostly speed information, with the exception of a subset
of channels that also encode directional information. LFPH
PDs were most correlated with TC PDs, suggesting that LFP
activity in the 100- to 300-Hz band contains some information
from action potentials included in TC. LFPH has both higher
noise and signal correlations compared with TC, indicating that
LFPH signals are more homogeneous and tend to modulate
similarly. TC signals recorded from two neighboring elec-
trodes even just 400 
m apart have very low correlation. Our
findings support the interpretation that SUA, TC, and LFPH
integrate information at increasing spatial scales within the
cortex. Their neural origins are likely not identical: SUA is
composed purely of spikes from one nearby neuron, TCs are
probably a few neurons near the electrode tip, and also some
more distant large neurons, with perhaps a contribution from
postsynaptic potentials; LFPH is probably a large-scale (ap-
proaching millimeters) aggregate of spiking activity and post-
synaptic potentials; LFPL is probably a generalized signal
shared across a large swath of cortical tissue, far larger in
spatial scale than our array could sample and perhaps also with
a subcortical component. These interpretations are consistent
with the trends in our data, although other explanations may

Fig. 13. Averaging LFP PSD across frequency bands increases signal to noise
ratio: Each point corresponds to one electrode, and data from an entire recording
session. Two sessions (1 from each monkey) are shown here. There are a total of
192 points for each of LFPL and LFPH. For the x-axis, we computed the SNR for
every PSD frequency in LFPL and LFPH and then averaged the SNR values
separately for the LFPL and LFPH frequencies. For the y-axis, we first averaged the
LFP PSD across all frequencies in LFPL or LFPH, then computed the SNR for that
LFP PSD frequency band. As expected from Fig. 12, averaging the LFP PSD first
(y-axis) increases the signal to noise ratio. For the LFPL frequency band, signal
was weak, yet averaging provided slightly better SNR. For the LFPH frequency
band, averaging the LFP PSD first yielded much better SNR. The slopes of the
lines are 
3 and 
21, which are the square roots of the number of frequencies
in the LFPL and LFPH bands.
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also fit the data, and verifying these interpretations is well
beyond the scope of this work.

It is known that the beta band of LFP activity (here, LFPL),
roughly between 10 and 40 Hz, is suppressed during movement
(Rickert et al. 2005). We confirmed this in our data. However,
when assessing the encoding of kinematic features during a
reach, at 100-ms resolution, we find that the moment-by-
moment LFPL activity is not well correlated with the moment-
by-moment kinematic parameters. The already relatively small
R2 values for speed that we observe in the LFPL band further
decrease when we window our data to include only those hand
speeds that are �10% of the maximum speed of the reach (data
not shown). Thus, while LFPL can be used to distinguish
intended movement epochs from nonmovement epochs (e.g.,
Hwang and Andersen 2013), it does not appear to be useful for
inferring instantaneous features of the reach. This supports our
view that LFPL signals reflect a nonspecific signal that arises
from a much broader or more distant neural origin than LFPH.

Implications for BMI decoding. Our results have implica-
tions for BMIs, devices that use recorded neural signals to
actuate some device, such as a computer cursor (Taylor et al.
2002; Suminski et al. 2009; Ganguly and Carmena 2009;
Hochberg et al. 2006; Mulliken et al. 2008; Schalk et al. 2007;
Gilja et al. 2012; Ifft et al. 2013), robotic arm (Collinger et al.
2013; Hochberg et al. 2012; Wang et al. 2013), or muscle
stimulator (Ethier et al. 2012; Moritz et al. 2008). TC activity
is often thought to convey similar information as SUA. Several
researchers have used TCs in place of SUA during BMI tasks
(Santhanam et al. 2004; Fraser et al. 2009; Chestek et al. 2011;
Sadtler et al. 2011; Hochberg et al. 2012; Christie et al. 2014).
The general conclusion from that work has been that decoding
performance can be just as good with TCs as with SUA. We
find that although velocity encoding models fit to TC and SUA
span a similar range of R2 values (Figs. 5 and 6), there is more
prominent speed encoding in our TC signals compared with
SUA. In fact, it is in part because of this that TC signals encode
information more similarly to LFPH than to SUA. This indi-
cates an avenue to improving BMI design: velocity information
could be extracted from SUA, and TC could provide speed
information. We note that it is likely that the prominent speed
tuning we see also depends on our choice of threshold, which
was set to be three times the root mean square value of the
intertrial band-pass-filtered voltage trace. This is slightly more
inclusive than is used in many BMI settings (e.g., Hochberg et
al. 2012 and Chestek et al. 2011 used a setting of 4.5 times root
mean square). Because of this, the speed tuning in TC in those
studies may be somewhat less pronounced than it was in our
data.

While the majority of BMIs rely on either sorted spikes or
TC activity, there is an increasing recognition that LFP activity
also carries useful information and may actually provide a
more stable long-term signal for clinical applications (Flint et
al. 2013; Markowitz et al. 2011; Bansal et al. 2012; Hwang and
Andersen 2013).

Although it is sometimes dangerous to draw conclusions
about online decoding performance from offline data (Chase et
al. 2009; Cunningham et al. 2011), the prominent speed tuning
we observe in our TC and LFPH signals suggests that decoders
that utilize these signal types would likely benefit from taking
speed tuning into account. Unfortunately, since speed is a
nonlinear transform of velocity, this implies that linear decod-

ers such as the Kalman filter (Wu and Hatsopoulos 2008) may
not actually be optimal when based on TC or LFPH inputs.
However, nonlinear state-space algorithms abound and have
proven fruitful in decoding applications (e.g., Koyama et al.
2010; Li et al. 2009; Brockwell et al. 2004; Shpigelman et al.
2008; Dethier et al. 2013). Another approach to accounting for
speed in improving BMI control would be to treat it as a
“nuisance variable,” and use latent variable approaches to
mitigate its effect on decoding (Lawhern et al. 2010; Paninski
et al. 2010). Speed control, especially in terms of stopping
stability, is known to be poor in BMI control (Carmena et al.
2003; Hochberg et al. 2006; Kim et al. 2006; Ganguly and
Carmena 2009; Gilja et al. 2012; Golub et al. 2014). It is
possible that speed and stability could be improved by the
addition of LFPH and LFPL signals to existing decoding
algorithms.

Given the differential encoding of reach kinematics across
the three signal types, we suggest that a hybrid approach may
prove optimal for BMI decoding. This approach could rely
more on the well-isolated single units to infer direction and
more on the LFPH signals to infer speed. The LFPL signals
could serve as an on/off switch to initiate movement. In a
hybrid decoding scheme, SUA would be used whenever well-
isolated neurons were available, and TC could be taken from
the other electrodes. Together, they could provide direction and
velocity information. LFPH could provide speed information.
Since LFPH is so similar across electrodes, only a few elec-
trodes would be needed. Of course, the same electrodes could
be processed differently (Fig. 1) to attain signals of different
modalities. Then, a signal to turn on and off neural control of
the device could be taken from LFPL (again, a few channels
would be sufficient). In this way, a BMI could be designed that
provides continuous use, eventually allowing such devices to
be used outside of the laboratory setting.
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