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Abstract

Sensorimotor control engages cognitive processes such as

prediction, learning, and multisensory integration.

Understanding the neural mechanisms underlying these

cognitive processes with arm reaching is challenging because

we currently record only a fraction of the relevant neurons, the

arm has nonlinear dynamics, and multiple modalities of sensory

feedback contribute to control. A brain–computer interface

(BCI) is a well-defined sensorimotor loop with key simplifying

advantages that address each of these challenges, while

engaging similar cognitive processes. As a result, BCI is

becoming recognized as a powerful tool for basic scientific

studies of sensorimotor control. Here, we describe the benefits

of BCI for basic scientific inquiries and review recent BCI

studies that have uncovered new insights into the neural

mechanisms underlying sensorimotor control.
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Introduction
Successful sensorimotor control requires the coordination

of multiple cognitive processes. On a moment-by-mo-

ment basis, the brain integrates various sources of sensory

information [1–3], selects and plans upcoming move-

ments [4–6], internally predicts the consequences of

motor commands [7], and adapts to compensate for

changes in the body and environment [8,9]. Addressing

the complexity of these interconnected processes poses a
www.sciencedirect.com 
formidable challenge for neuroscientists seeking a more

complete understanding of the neural mechanisms un-

derlying sensorimotor control.

A common paradigm for studying sensorimotor control is

arm reaching (Figure 1, left). Even the simplest of arm

movements emerge from a complex set of neural, muscular

and skeletal systems. Movement generation involves mul-

tiple distinct cortical areas that project to the spinal cord,

numerous striatal and cerebellar loops, and several brain-

stem and thalamic nuclei [10]. However, in typical experi-

ments, we can monitor only a tiny fraction of the hundreds

of thousands of neurons that project to motoneuron pools,

and it is often unknown whether the recorded neurons

project to the spinal cord or affect behavior only indirectly.

As a result, it is difficult to causally attribute behavioral

changes to specific changes in the recorded neural activity.

Furthermore, the arm is a multi-jointed structure actuated

by dozens of muscles [11], and because of these complexi-

ties, the arm’s nonlinear dynamics are not typically mea-

sured in studies of arm reaching. In addition, sensory

feedback about the arm movement is carried through

multiple sensory modalities, including vision and proprio-

ception, that have different latencies and need to be

combined [12]. Although visual feedback about the arm

can be readily manipulated [8,12–14], proprioceptive

feedback cannot be decoupled from movement as easily

[15].

How can we obtain a more complete understanding of the

cognitive processes underlying sensorimotor control in

light of this daunting complexity? Perhaps we could gain

traction if we could simultaneously record neural activity

from multiple brain areas in the motor system, including

all neurons that directly drive movement; if we could

identify and reversibly reprogram the precise mathemati-

cal relationship between neural activity and movement;

and if we could independently alter different modalities

of sensory feedback.

In this review, we describe how brain–computer interfaces

(BCIs) provide a simplified, well-defined, and easily ma-

nipulated experimental paradigm that facilitates the basic

scientific investigation of the cognitive processes engaged

during sensorimotor control (Figure 1, right). A BCI creates

a direct mapping between recorded neural activity and the

movement of a device, such as a computer cursor (or robotic

limb) [16,17��,18–22,23��] and substantially simplifies the

complexities described above (Table 1). Although neurons

throughout the brain can indirectly influence movement,
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Conceptual illustration of the sensorimotor control loop for arm reaching (left) and BCI (right) movements.
only the activities of experimenter-chosen output neurons

directly drive BCI cursor movements. Thus, all aspects of

behavior must be expressed in the activity of these

recorded output neurons, and it is possible to causally

interpret the role of each neuron in behavior since the

mapping between neural activity and cursor movement is

completely known to and specified by the experimenter.

Cursor dynamics can be defined by the experimenter to be

linear, and they can be altered as desired. Furthermore, we

can flexibly manipulate sensory feedback because propri-

oceptive feedback is not hard-wired to cursor movement,

as it is for arm movement. As a result of these simplifica-

tions, we and others have begun to leverage BCI as a

powerful experimental paradigm for addressing basic sci-

entific questions about sensorimotor control. Although

similar concepts apply to EEG-based (e.g. [24]) and

ECoG-based (e.g. [25]) BCI, we focus on intracortical

BCI in this review. Previous reviews have described use

of BCI for addressing scientific questions [26–28]. Here, we

focus on the key simplifications offered by BCI and de-

scribe the scientific insights that have emerged by leverag-

ing each simplification.

Monitoring all neurons that directly drive
movement
In arm reaching studies, it is typically not possible to

attribute every aspect of behavior to specific features of
Table 1

Comparison of BCI control to arm reaching. Bold items indicate entrie

system for studying sensorimotor control

Arm reachin

Effector Arm 

# of non-output neurons Millions 

# of output neurons Thousands (only a subse

Neuron-to-movement mapping Unknown 

Effector dynamics Difficult to measure, non

Sensory feedback Tied to arm 
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the recorded neural activity because there are unre-

corded neurons that can directly drive behavior. In

contrast, for BCI, all neurons that directly drive behav-

ior are recorded, by construction. Thus, it is possible to

causally attribute changes in behavior to the activity of

specific neurons.

This property of BCI is particularly well exemplified by

single-unit operant conditioning studies. In operant con-

ditioning, the subject’s task is to learn to volitionally

modulate neural activity to specified levels using real-

time visual [29,30] or auditory [31��] feedback. The visual

or auditory feedback represents the BCI ‘behavior’. Op-

erant conditioning is particularly valuable for studying

(internal) cognitive processes because it allows the ex-

perimenter to manipulate neural activity that has, under

ordinary circumstances, only an indirect relationship to

externally measurable variables. This approach was pio-

neered by Fetz [30] in the motor cortex, and later adopted

in a large body of studies [32–37]. More recently, studies

have demonstrated the importance of operant condition-

ing for studying the neural substrates of cognitive pro-

cesses, including spatial [31��] and object-based [38]

attention, that are involved in sensorimotor control. In

particular, Schafer and Moore [31��] found that volitional

changes in frontal eye field (FEF) activity are associated

with selective visual attention.
s that make BCI a simplified, well-defined and easily-manipulated

g BCI

Cursor or robotic limb

Millions

t are recorded) Tens-to-hundreds (all are recorded)

Known

linear Known, can be linear

Flexibly manipulable
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Distinguishing between output and non-
output neurons
Beyond monitoring all neurons that directly drive behavior

in a BCI (output neurons), it is also possible to simulta-

neously monitor additional neurons that are not explicitly

mapped to behavior (termed non-output neurons). This is

advantageous for investigating whether and how the activ-

ity of output neurons of sensorimotor control differs from

that of non-output neurons. For example, it may be that the

non-output neurons support internal cognitive processes

that enable output neurons to produce activity that is

suitable for driving behavior. In arm reaching studies, it

can be a daunting task to identify which motor cortical (M1)

neurons project directly to motoneurons that innervate

muscles [39–41]. In contrast, in BCI, the experimenter

simply designates which recorded neurons are output

versus non-output and examines neural activity as the

subject learns to use the BCI over time.

This property of BCI has been exploited by comparing the

activity of output and non-output neurons in M1. Output

neurons have been observed to show stronger task-related

modulation than non-output neurons [42�,43,44,45�]. This

finding does not imply that the non-output neurons stay

silent or at baseline activity levels. Rather, the non-output

neurons typically change their activity together with the

output neurons [46], albeit with weaker task-related mod-

ulation. It is also possible to record non-output neurons

outside of M1. Carmena and colleagues recorded non-

output neurons in the striatum and found that corticos-

triatal plasticity is necessary for BCI learning [47] and is

specific to the output neurons in M1 [48��].

Defining a simple mapping
In arm reaching studies, we typically do not know the

exact mapping between neural activity recorded in the

brain and arm movement. Even if we could identify the

mapping, it would likely involve non-linear dynamics due

to spinal [49] and muscle [11] properties, making it

difficult to analyze. With BCI, the experimenter specifies

exactly how the activity of the output neurons maps to

cursor movement. The mapping can be chosen to define

linear dynamics, for example:

xt ¼ Axt�1 þ But (1)

where x is the cursor movement (e.g. velocity), u is the

activity of the output neurons, and A and B are the mapping

parameters. Commonly used BCI mappings, including the

Kalman filter, optimal linear estimator and population

vector algorithm, can be expressed in this form.

Studies have exploited the linearity of the BCI mapping

to elucidate the neural mechanisms of cognitive processes

underlying sensorimotor control. It is widely believed

that we form internal models of our effectors, which
www.sciencedirect.com 
enable selection of appropriate neural activity patterns

and internal prediction to compensate for sensory feed-

back delays [8]. We found that cursor movement errors

can be explained by a mismatch between the internal

model and the BCI mapping [50��]. By using a linear BCI

mapping, we could focus on the family of linear internal

models, which facilitated the identification of internal

models from neural activity. Another convenient property

of a linear BCI mapping is that one can exactly identify its

null space — the space of neural activity changes that do

not affect movement [51]. Analyses of neural variability in

this null space have led to insights into sensorimotor

learning [45�] and error correction [52].

Changing the BCI mapping
A key feature of sensorimotor control is the ability to

learn, adapt, and refine motor skills over time. This ability

is mediated by a suite of learning processes that operate in

parallel to maintain proficient control [14]. Our under-

standing of these learning processes has relied largely on

studies of arm movements [8], hand movements [53], and

muscle activity [54–56]. Disentangling the neural basis of

these processes has proven challenging [57–59], primarily

because it is difficult to interpret the behavioral relevance

of adaptive changes in neural activity if the causal role of

those neurons in generating behavior is not known [60].

BCI can help to overcome this difficulty. Just as the

experimenter can define the BCI mapping from neural

activity to behavior, he or she can also redefine the

mapping as desired throughout an experiment and ob-

serve whether the subject is able to learn to use the new

mapping. Importantly, learning-related changes in behav-

ior can then be causally attributed to specific changes in

the recorded neural activity. The mapping can be rede-

fined by shuffling its weights [16] or by altering the

weights in a structured fashion [23��,46,61,62]. These stud-

ies have found that the brain is able to attribute behavioral

errors to individual neurons responsible for the errors

[61,62], and that the underlying network structure shapes

learning [23��]. The latter study [23��] suggests that

cognitive tasks which require novel population activity

patterns (i.e. additional dimensions of the population

activity [63]) can be hard to learn.

Flexibly manipulating sensory feedback
Executing a reaching movement requires estimating the

current state of the arm by combining visual, propriocep-

tive, and other sensory information. Understanding multi-

sensory integration is challenging because each sensory

modality has a different coordinate frame and processing

delay, and the subject weights the different modalities

based on their reliability [2]. To understand how different

sensory modalities contribute to sensorimotor control, one

would like to be able to manipulate or turn off each sensory

modality independently. Visual feedback is relatively

easy to manipulate [8,12–14]. Proprioception, however, is
Current Opinion in Neurobiology 2016, 37:53–58
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tied to the arm, making it difficult to manipulate or turn off

in a way that still allows the subject to perform the task [15].

With BCI, the experimenter can independently manipu-

late visual and proprioceptive feedback, thereby facilitat-

ing the study of multisensory integration during

sensorimotor control. Because BCI movements are not

tied to arm movements, it is possible to perform BCI

control with the arm stationary, moving in concert with

the cursor, or moving independently of it [64,65]. This

property of BCI was leveraged to study the influence of

proprioceptive feedback in M1 [17��]. The study found

that BCI control was more accurate when the arm was

moving in concert with the cursor, thereby demonstrating

the importance of informative proprioceptive feedback

for M1. In a related study, Dadarlat et al. [66�] recently

showed that microstimulation of primary somatosensory

cortex can induce artificial proprioception, and that the

sensorimotor system can optimally integrate this informa-

tion with noisy visual feedback.

Conclusions
Science proceeds through the use of model systems: to

understand an important but complex aspect of the

natural world, we carefully select reduced systems that

are experimentally tractable and that bear an important

relation to the full system. Insights can emerge from the

study of the simpler system that apply directly in the

complex system, or at least help to crack open new

avenues to understanding the more daunting problem

[67]. An important question is whether BCI is an appro-

priate reduced system for studying sensorimotor control.

BCI cursor control performance is approaching arm reach-

ing performance [20], thereby enabling well-controlled

scientific studies. In addition, well-established cognitive

processes present during arm reaching, such as internal

forward prediction [50��], learning [16,23��], and multi-

sensory integration [17��], are also engaged during BCI

control. Nevertheless, it remains an open question wheth-

er the neural mechanisms underlying these cognitive

processes are conserved between arm reaching and

BCI control. Current findings suggest that there is at

least some overlap in the brain areas involved in native

motor control and BCI control. Coordination between the

cortex and the basal ganglia appears to be required for

motor learning in both native motor [68,69] and BCI

[47,48��] control. Although the role of cerebellar circuits

in BCI control has not yet been explicitly demonstrated,

BCI subjects adapt to visuomotor rotations [62] and form

internal models [50��], both of which are believed to be

primarily cerebellar-dependent processes [8]. Because of

the similarity of the cognitive processes and brain areas

involved in native motor and BCI control, we view BCI as

a stepping stone toward understanding the full native

sensorimotor control system. The BCI paradigm, being a

reduced system, offers vastly improved accessibility and
Current Opinion in Neurobiology 2016, 37:53–58 
manipulability, without simplifying away the complexi-

ties of brain processing that we wish to understand.

As with any reduced system, BCI does have certain

limitations for studying the full system. There are aspects

of sensorimotor control that are difficult to study with a

cortical BCI because they occur ‘downstream’ of the

particular set of neurons used for BCI control (e.g. spinal

cord mechanisms). Also, it is an open question how the

absence of some natural sensory feedback mechanisms

(e.g. touch) shapes the cognitive processes being studied

during BCI control. Despite its limitations, BCI studies

have made important headway toward elucidating the

neural mechanisms of attention, prediction, learning, and

multisensory integration in the context of sensorimotor

control. Sensorimotor processing is just one manifestation

of cognition, and the BCI approach may eventually be

harnessed to yield insight into the many forms of cogni-

tion of which we human beings are capable.
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