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Abstract
Two rhesus monkeys were trained to move a cursor using neural activity recorded with silicon
arrays of 96 microelectrodes implanted in the primary motor cortex. We have developed a
method to extract movement information from the recorded single and multi-unit activity in
the absence of spike sorting. By setting a single threshold across all channels and fitting the
resultant events with a spline tuning function, a control signal was extracted from this
population using a Bayesian particle-filter extraction algorithm. The animals achieved
high-quality control comparable to the performance of decoding schemes based on sorted
spikes. Our results suggest that even the simplest signal processing is sufficient for
high-quality neuroprosthetic control.

(Some figures in this article are in colour only in the electronic version)

Introduction

This paper demonstrates an alternate strategy for processing
signals from intracortical electrodes for prosthetic control.
Current brain–computer interfaces based on intracortical
electrode arrays use extracellular action potentials processed
with spike-sorting strategies to generate a control signal
(Hochberg et al 2006, Musallam et al 2004, Santhanam
et al 2006, Taylor et al 2002, Velliste et al 2008, Wessberg
et al 2000). A threshold voltage is set for a particular
electrode, and each time the voltage potential exceeds that
threshold, a waveform snippet of the time-varying potential
is recorded. These waveforms are divided into one or
more categories, in the hope of identifying individual cells
or separating out cell-related activity. During a typical
neuroprosthetic control experiment, a human operator will
view the ongoing waveforms for a brief period on each channel
at the beginning of each day’s session and attempt to identify
distinct waveforms by setting the spike-sorting parameters
of a digital signal processing device. The need for human

5 Author to whom any correspondence should be addressed.

intervention is an obstacle to bringing neural prosthetics from
the lab to the clinic, as is the complex digital signal processing
employed in current brain–computer interfaces..

A separate class of brain–computer interfaces (BCIs)
use low-frequency signals from external electrodes (EEGs,
for example Wolpaw et al 1991), surface macroelectrodes
(ECoGs, for example Leuthardt et al 2004) or intracortical
microelectrodes (LFPs, for example Mehring et al 2003,
Pesaran et al 2002). These techniques and those based on spike
activity can be ordered according to their spatial resolution,
with EEGs at one end and spike activity at the other. The BCIs
with the highest number of degrees of freedom and accuracy
have been operated with spike activity (Taylor et al 2002,
Velliste et al 2008, Wessberg et al 2000).

Recent papers have suggested other schemes for
extracting a control signal from intracortical recordings. Stark
and Abeles (2007) showed that multiunit activity, reflected in
the power between 300 and 6000 Hz, is a good predictor of an
upcoming hand movement in macaques. Ventura (2008), using
simulated data, extracted movement intent from the mixtures
of tuned units, with an accuracy comparable to traditional
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spike-sorting approaches. Both of these papers suggest that
there is information found in relatively unprocessed signals
from microelectrodes in the motor cortex. In the current study,
we report on the feasability of operating a brain–computer
interface without spike sorting with recordings from two
monkeys chronically implanted with microelectrode arrays.

Methods

Chronic microelectrode implant

Monkey A, a male rhesus macaque, was implanted in January
2007 with a single 96-channel array (Blackrock Microsystems;
Maynard et al 1997) on the convexity of the motor cortex
next to the central sulcus, with the lateral edge of the array
∼2 mm medial to the genu of the arcuate sulcus. The recording
sessions reported here were done in June 2008. Monkey C, also
a male rhesus macaque, was implanted in February 2009 in the
same location. The reported sessions were recorded 10 weeks
later. Monkey A’s array gave as many as 130 distinguishable
cells and multineuron combinations during the period of best
recordings. At the time of this experiment, June 2008,
there were 1–2 clear single units, 1–6 probable single units,
∼40 fair neuron/multineuron combinations and 15–30 poor
multineuron traces on a typical day of recording. Monkey C’s
array gave ∼75 fair neuron/multineuron combinations and ∼5
probable single units on the day of this experiment.

Behavioral task

Prior to the implant, the monkey was trained to do a center-out
arm movement task in a virtual environment. It sat in front of
a stereoscopic computer monitor (DTI, Rochester, NY) with
one arm gently restrained, and the other free to move with
an infrared marker taped slightly distal to the wrist so that
its position could be monitored with a motion capture system
(Northern Digital, Waterloo, ON, Canada). The position of the
infrared marker drove the position of a green cursor displayed
on the screen in a virtual environment. Blue spheres were
displayed as targets at various points in the three-dimensional
environment and the monkey was rewarded with a droplet of
water for making and holding contact with the targets. In each
case, the monkey first made contact with a central target and
touched the target for a required time of 200–300 ms, selected
randomly from a uniform distribution. A peripheral target was
then randomly selected from a queue of remaining targets.
In the experiments described in this paper, we used a set of
16 targets, their centers arranged evenly in a circle on the
plane of the monitor with a radius of 85 mm for monkey A and
79 mm for monkey C. The monkey moved to the peripheral
target within a limited time period—1600 ms in this study—
and held contact for a required time of 0–200 ms. The cursor
and the target had radii of 8 mm for monkey A and 9 mm
for monkey C. The variable hold period was long enough
that the monkey could not consistently succeed by moving
straight through the target—it had to stop or drastically slow
its movement as it approached the target. Once a target was
hit successfully, it was dequeued from the remaining targets.

After the monkey was implanted and the neural signals
were deemed large enough and stable enough to sort (about
3 weeks for both monkeys), the animal began to use the
brain–computer interface. Both arms were restrained and the
cursor was driven with neural activity. To decode intent, it is
necessary to determine the tuning parameters of the neurons
being recorded. In this study, we made a first estimate by
running the task with null tuning parameters. In brain control,
the cursor was placed on the central target at the beginning
of each trial. Then the peripheral target was presented after
the expiration of the central hold period. Initially, the monkey
was unable to move the cursor with null tuning parameters
and failed each trial. Nevertheless, the monkey modulated
its neural activity consistently for each target, making it
possible to estimate tuning parameters and begin real-time
neural decoding. During this initial period where the control
parameters were adapting, we enhanced the straightness of the
trajectories by artificially reducing the deviation from the ideal,
perfectly straight movement. At each timestep, the prediction
of the decoding algorithm was decomposed as the sum of a
vector straight toward the target and a vector orthogonal to it.
The orthogonal vector was then multiplied by the deviation
gain: between 0.1 and 0.5 in this study. Adjusting the
deviation gain is a highly subjective process; we ramp up
the deviation gain as the model parameters are re-fit with more
data and the decoding becomes more consistent. Choosing
how much deviation gain to apply is a matter of balancing the
need for straight trajectories with the tendency of the monkey
to modulate erratically if it realizes that the trajectories come
out straight regardless of the consistency of its modulation.
We need straight trajectories while the decoding parameters
are being fit so that we can accurately compute the tuning
functions of signals. At the same time, the monkeys have
shown a tendency to produce inconsistent modulation if the
deviation gain is too strong for too long. The experimenter
attempts to balance these priorities. Typically the deviation
gain is 0.1–0.25 for the first 16 targets, 0.5 for the next set and
0 thereafter. If the trajectories are still erratic, we will keep
it on longer. This procedure was used only in these adaptive
sessions. Deviation gains were used only for a short period at
the beginning of a daily experimental session for calibration
purposes. Subsequent control used no deviation gain.

Signal processing

Signals were buffered, amplified, bandpass filtered at
250–8000 Hz and processed using a 96-channel Plexon
Multichannel Acquisition Processor (Plexon Inc., Dallas, TX).
The DSP system was configured so that it would register all
events crossing a negative threshold in the downward direction
and send their times to one of the task-management computers.
In monkey A, a threshold was set across all channels at
−37.5 μV, except ten channels where the power of the time-
varying voltage was so high that it constantly saturated the A/D
converter. On those channels the gain was reduced until the
clipping was under control, effectively putting the thresholds
in the (−)40–80 mV range. In monkey C, the signals had
higher amplitude and the threshold was set at –60 μV for all
channels. In both animals the threshold was chosen to be as
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low as possible without severely overloading the capacity of
the DSP system on too many channels. There was a sufficient
variation in the signals to cross the threshold on 95/96 channels
in monkey A and 78/96 channels in monkey C. It should be
noted that because of the difference in the age of the implanted
arrays (10 weeks in monkey C versus 1.5 years in monkey
A), the signals are very different. In the very old array of
monkey A, the amplitude of the sortable action potentials is
much closer to the amplitude of the background noise. In the
very young array of monkey C, the action potentials stand out
much more strongly from the background, but there are often
more active neurons observable on a given channel. Hence the
threshold had to be set higher in monkey C to avoid capturing
so much activitiy that the capacity of the DSP system would be
overloaded. This higher threshold resulted in 18 channels that
observed no threshold crossings. For the same reason monkey
C showed less of a difference in the baseline rate for sorted
versus unsorted sessions, as evidenced in figure 5. It should
be noted that in both monkeys the resulting signals were not
comparable to single-unit recordings; the waveforms picked
up by the threshold included large amounts of background
activity and noise on nearly every channel where the signal
crossed the threshold at all. This is evidenced by the fact that
threshold crossings showed consistently higher baseline rates
and modulation depths than units sorted on the same channels
(figure 5).

Decoding algorithm

We used a Bayesian–Monte Carlo estimation algorithm very
similar to the one described by Brockwell and colleagues
(2003). This algorithm, called a particle filter, solves the
problem of decoding neural intent by offering a firing-
rate model for each recorded unit, and then estimating the
movement intent most consistent with this forward model
and the recent history of movement. The particle filter can
be intuitively understood in terms of a hypothesis space of
movement intents that the monkey might have at the present
timestep. The particle filter uses modulated control signals: a
neuron whose firing rate increases for a particular movement
direction, or in this study, a time-varying voltage signal which
crosses a threshold more or less often depending on the current
intended movement direction. A single modulating signal
gives the particle filter information about which regions of the
hypothesis space are consistent with its current level of activity.
One signal alone will leave ambiguity: a high-firing neuron
indicates movement in its preferred direction, or perhaps
movement somewhat off its preferred direction at a higher
speed. These signals are noisy, so one signal may simply be
wrong at the present moment. The particle filter searches the
hypothesis space at several hundred points—particles—for the
region that is most likely given all the current activity levels.
The distribution of particles in one timestep is generated from
their position in the previous timestep, which enforces our
assumption that movement in the current timestep is similar to
movement in the previous timestep. This distribution is biased
according to the likelihood of the hypothesis that each particle
had found. Thus the particles form a cloud that follows the

most likely region of the hypothesis space from one timestep
to another. This process is diagrammed in figure 1. Using a
particle filter as an extraction algorithm is simply a matter of
identifying a modulated signal and specifying a tuning function
for it. Brockwell and colleagues used an exp(cosine) firing-
rate model where each sorted unit had a baseline rate, a single
preferred direction and an adjustable-width tuning function.
Our new approach is based on a firing-rate model that makes
fewer assumptions about the shape of the tuning function:

λi = bi,0 + s

8∑
j=1

wi,j · f (θ · 4/π − j). (1)

Here, λi is the total rate of threshold crossing on channel i,
bi,0 is the baseline firing rate of that channel, s is the speed of
movement and θ is the angle of movement in the X–Y plane.
f is a cubic spline basis function which is being shifted and
stretched by the θ · 4/π − i formula. It has the following
mathematical definition:

f (x) =
〈

x < −2|2 < x

−2 � x < −1|1 < x � 2
−1 � x � 1

∣∣∣∣∣
0

(2 − |x|)3

1 + 3 (1 − |x|) + 3 (1 − |x|)2 − 3 (1 − |x|)3

〉
,

where f is a bell-shaped function spanning the range
[−2, 2]. It represents a cubic spline basis function; by shifting
and spacing these basis functions at intervals of 1 and adding
them up, we get a set of basis functions that span the entire
circle of movement directions. wi,j is the weight of a particular
spline basis function, fit by a regression model. The effect of
the summation portion of the firing model is to fit a smoothing
spline to the firing rate as a function of the intended movement
direction in the X–Y plane. This process is diagrammed in
figure 2. Our model effectively states that the firing rate is
equal to a baseline rate plus an 8-knot spline function in polar
coordinates that expands and contracts according to the speed
of movement. The wi,j parameters which determine the shape
of the spline function are fit using linear regression. Our
decoder is written in Matlab (Mathworks, Natick, MA) and
uses its GLM library to fit the model with an identity link
function.

The empirical firing rate of cell i is taken to be Poisson
distributed with mean λi . Thus, the probability of observing a
specific bin count ni given a firing rate λi from equation (1) is
given by the following equation:

P(ni |λi) = poisspdf(ni, λi · �t),

where poisspdf gives the Poisson probability density function
with mean λi · �t evaluated at ni (�t is the width of the bin).
The particle filter also incorporates an assumption about the
way velocity changes over time. In both Brockwell et al and
this paper, it is assumed that the velocity at one timepoint
is related to the previous timepoint according to a Gaussian
distribution. The standard deviation of this distribution
depends on the length of the time step and the assumptions
of the experimenter. In a brain-control experiment it should
correspond to the distance to the target and the movement
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Figure 1. Extracellular activity-related signals are recorded from motor cortex activity (N1–N5). The number of threshold crossings is
counted on each channel for each 33 ms interval (left panel) and fed into a particle filter extraction algorithm that compares bin counts to the
known tuning functions of those channels. Each bin count points to a probable region of the hypothesis space of movement trajectories
(middle panel). The particle filter maintains a set of hypotheses about movement (middle panel, small dots). At each timepoint these
particles are moved randomly by a distance drawn from a Gaussian distribution, then resampled according to the probabilities indicated by
the counts N1–N5. In this manner the particle cloud is dragged around by the probable regions from the N1–N5 counts. An outlier bin count
which disagrees with the rest of the population (above, N5) will have little influence over the particle cloud. To generate an estimate of the
global movement intent we simply take the mean of all the particles.

Basis functions

Weighted bases add up to a 
tuning function

Figure 2. A tuning function is fit as a weighted sum of spline basis
functions. The tuning function of one channel is shown as the thick
black line. It is fitted as a sum of shifted bell-shaped basis functions
(top), each of which spans a π/4 radian section of movement
directions. The basis functions are scaled (bottom) and added to
produce the fitted function.

duration. Here, we assume that velocity changes with a
standard deviation of 67 mm s−1 over 1 s. The prior probability
of the x-component velocity at the current timestep, x̄, given
the x-component of velocity at the previous timestep, x, is
a function of the length of the timestep �t and the standard
deviation of movement per second σ :

P(x̄|x) = normpdf(x̄, x,
√

�t · σ), (2)

where normpdf describes the normal distribution probability
density function for the distribution with mean x and standard
deviation

√
�t · σ , evaluated at x̄. The problem of decoding

an intended movement direction from the threshold-crossing
activity is then a matter of maximizing the probability

distribution defined by equations (1) and (2):

P (x̄, ȳ|x, y, n1, . . . , nm) ∼ P(x̄|x) · P(ȳ|y)

·P(n1|x̄, ȳ) · · · · · P(nm|x̄, ȳ), (3)

where x and y are set to 0 at the beginning of each
trial (during the central hold period); n1, . . . , nm are the
observed bin counts for the m channels being used. The
absolute probability of the left-hand side of equation (3) is
scaled by additional terms, but since we are only interested
in the relative maximum we can leave them out. The
particular filter uses a set of particles—points in the X–Y
velocity coordinate space—to estimate the maximum of this
distribution. Each time a new set of bin counts arrives, the
particles are moved probabilistically. First, each particle
makes a random movement whose destination is chosen from
a normal distribution with mean at the previous location of the
particle and standard deviation of

√
�t · σ . This corresponds

to the first two terms on the right-hand side of equation (3).
Second, for each particle, a probability is calculated equal
to the remaining terms of equation (3). The entire
population of particles is then resampled from itself, with
replacement, according to these probabilities. This means
that high-probability particles are more likely to reappear
after resampling, and that some particles will end up being
represented multiple times in the new population.

These steps are constructed so that the probability
distribution of the position of a single particle is exactly equal
to the distribution being estimated. The entire population of
particles acts as a proxy for the distribution being estimated.
We generate a single estimate of movement for real-time
brain control by taking the mean of the entire population of
particles. The accuracy of decoding increases with the number
of particles, but so does the computational complexity. We
used 400 particles, which we found to be the highest number
where the computation could be completed reliably in the time
between bin counts. With a simulated population we found
that the quality of control did not become noticeably worse
until the number of particles dropped below 50.
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The described decoding algorithm has a number of
parameters (the bi,0 and wi,j terms in the model) that must be fit
from the actual tuning of the neurons. In the reported unsorted
neural control session for monkey A, we used previous day’s
parameters as the initial parameters for decoding. At the
beginning of the day we ran an adaptive session where we
re-fit the wi,j and bi,0 terms. We gave 4 sets of 16 targets,
re-fitting the model to the cumulative set of data for that
day after each set. For the purposes of linear regression, the
intended movement was taken as the idealized vector from the
center of the workspace to the peripheral target. For monkey
C we set the initial parameters to 0, which means that for
the first 16 targets the cursor did not move. Nevertheless,
the monkey looked at the monitor and modulated its neural
activity sufficiently to get a set of parameters to move during
the remainder of the adaption period.

The sorted session for monkey C was done in exactly the
same way as the unsorted session, with parameters initially set
to 0. The sorted session for monkey A was done somewhat
differently; parameters were initially 0 but the extraction
algorithm being used was a variation on the Bayesian inference
decoder where Laplace’s method of integration is used in place
of the Monte Carlo particles of the particle filter. We have
found that the accuracy of the two methods is similar; the
main difference is that the Laplacian integration method is
computationally more efficient.

Results

Four datasets are reported here, unsorted and sorted for
monkeys A and C. In all cases cursor movement was confined
to the two-dimensional plane of the monitor, though the VR
system displayed objects in three dimensions. Monkey C did
the unsorted control session first, followed by an 80 min break,
and then the sorted control session. It had less than half its
daily water quota in the first session so its motivation level
was still high during the second session, assessed by the fact
that it engaged in the task continuously for the entirity of both
sessions. It used exactly the same decoding algorithm for both
sessions, except that the extraction algorithm was being fed
counts of threshold crossings in the first session and counts of
sorted spikes in the second. Monkey A did the unsorted session
2 weeks after the sorted session. The sorted session contained
two breaks where the decoding algorithm was seamlessly
switched to the population vector algorithm (Taylor et al 2002)
for 80 and 112 trials. These trials are excluded. This particular
sorted session was chosen for comparison because it was also
done in the middle of the week when the monkey’s motivation
level tends to be highest, it used a Bayesian decoding algorithm
very similar to the particle filter, and it was contemporaneous
with the other session.

There is an inherent variation in the quality of brain-
control decoding from one session to the next, even when
they are performed on the same day. When the parameters
are initially set to zero and then fit from a limited set of
movements during the adaptation period, the accuracy of the
fit depends on the way that the animal modulates its activity
during those particular trials. Therefore, it is not possible to

make an exacting comparison between the quality of control
in the sorted versus unsorted session. We can only evaluate
whether the unsorted scheme works approximately as well as
a decoder based on sorted units. The primary metrics we
have for the quality of control are our subjective impression of
figure 3; the success rate of the animal; the speed of movement;
and the straightness of the trajectories.

Monkey A Monkey C

Unsorted Sorted Unsorted Sorted

Success rate 78% 93% 96% 84%
Duration 815 ms 932 ms 707 ms 630 ms
Straightness 1.12 1.10 1.11 1.17

Success rate is simply the proportion of trials where the
animal succeeds according to the central hold, movement time
and peripheral hold criteria defined in the methods section.
Speed is the time between the peripheral target being presented
and the cursor contacting it. Straightness is the total path
length of the cursor from when it left contact with the no
longer visible central target to when it made contact with the
peripheral target, divided by the length of a perfectly straight
line between the endpoints of the same path. The above table
gives the median speed and straightness for all successful trials.

We can treat the threshold crossings on a particular
channel as though it were a neuron and define a tuning function
for it—an estimate of what the threshold-crossing rate will
be when the monkey moves in a particular direction at a
particular speed. The wi,j parameters of the particle filter
decoder describe such a tuning function; figure 4 compares the
assumptions of the decoder with the empirical per-target firing
rates observed in the control session. The thick black lines and
the black circles in figure 4 show the comparison between the
model’s spline fit and the later activity of the channels. The
channels shown are selected from the better-tuned half of what
we recorded, but are representative in terms of the model’s fit
and the lack of multimodality in the tuning functions. The
particular examples shown in figure 4 are indicated on the
scatterplots in figure 5.

We would also like to make a quantitative comparison
of the tuning characteristics of channels and neurons between
unsorted and sorted sessions. In the unsorted session, we
fit a cosine function to the 16-target mean threshold-crossing
rates. In the sorted session, we fit a cosine function in the same
manner, except that we used the combined activity of the sorted
neurons in place of the threshold-crossing event. Monkey A
had 60 channels with sorted units where such a comparison
could be made; monkey C had 62. Monkey A had 10 channels
with two sorted units and monkey C had 20; in these cases
the activities of the two units were simply merged together for
the purpose of fitting a cosine. In this small dataset, the mean
difference in preferred directions for two units on the same
channel was 80◦. The model for the cosine fit is

ni,j = βi,0 + βi,xxj + βi,yyj ,

where ni,j is the mean firing rate for unit i and target j ;
βi,0 is the baseline firing rate for neuron i; 〈xj , yj 〉 is the
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Figure 3. Superimposed movement trajectories as the monkey does the center-out task for 16 targets using unsorted threshold-crossing
signals (left) or sorted activity (right). This plot shows position samples at 30 Hz and incorporates all successful trials on a single day
between the start of the central hold period and the end of the peripheral hold period. The symbols are varied according to the target
direction in the current trial. The upper-left plot contains 384 trials, the upper right shows 233, lower left 480, lower right 512. The trials for
each condition were done in one contiguous block, except that in the monkey A/sorted condition there were two breaks in the trials where
the decoder was switched to the population vector algorithm (Taylor et al 2002) for 80 and 112 trials (these trials are excluded). Success
rates were 78%, 93%, 96% and 84% for A/unsorted, A/sorted, C/unsorted, C/sorted. Because of the vagaries of monkey motivation and
the fact that no two adaptation sessions are the same, it is not possible to make an exacting comparison of performance here. We can only
observe that both algorithms produce qualitatively good control.

vector to target j ; the angle of 〈βi,x, βi,y〉 is the preferred
direction of unit i and the length of 〈βi,x, βi,y〉 is the modulation
depth of unit i. The baseline rates, modulation depths and
preferred directions are compared between sorted and unsorted
conditions in figure 5. In both animals the baseline rates
and modulation depths were higher in the unsorted condition,
and the preferred directions were similar between unsorted
threshold crossings and the combined sorted units recorded
later on the same channels.

Discussion

We have demonstrated that good neural control can be
achieved without conventional spike sorting or careful setting
of thresholds. There is intrinsic variability in the quality of
control from one session to the next, so it is not possible to
make an exact quantitative comparison between sessions in
these data. An experimental paradigm that better controls
for the quality of adaptation data and the motivation level
of the animal is clearly an avenue for future research. This
initial finding has demonstrated that unsorted signals can be
substituted for conventional ones without a dramatic, obvious
drop in the quality of control.

We chose an 8-knot spline to model the tuning
function because we expected mixed neuron signals to create
complicated, sometimes multimodal tuning functions. We
were surprised to find that on virtually all channels, the tuning
function of the unsorted threshold crossings was roughly uni-
modal, in spite of the fact that where two units were recorded
on the same channel their preferred directions did not tend
to be similar. Since the tuning functions of the unsorted
signals are not multimodal, one may reasonably ask why the
population vector algorithm does not work well with these
signals. We did attempt to use the population vector algorithm
on these signals, but found the quality of control so poor that we
could not collect enough data to report. We speculate that the
challenging aspect of unsorted signals is not multimodality but
the background noise that is introduced. Statistical extraction
algorithms like the particle filter have the advantage of being
able to recognize when a channel is an outlier in the present
timestep, and to effectively reduce its contribution to the
inference of intent. The particle filter examines the space
of hypothetical velocities and asks the question: what is the
probability of observing these firing rates at various points in
the hypothesis space of velocities? If a channel is momentarily
inundated with background noise, it will point to a region of
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Figure 4. Five examples of 16-target tuning functions for neurons, sums of neurons and unsorted threshold crossings. Each of these five
examples shows various tuning functions from a single channel. The Y-axis shows the firing rate of a pseudo-unit during the movement
period of the task. The X-axis gives the angle from the start point in the center of the monitor to the peripheral target. The multiple plotted
lines illustrate how one or two identifiable neurons and background activity add up into the signal we observe with the blind thresholding we
used. The thin lines are the tuning functions of sorted units. The connected-circles line is the sum of these units. The open black circles
show the tuning function of the blind-threshold pseudo-unit used in unsorted control. The thick black line shows the fitted spline function
that the particle filter decoder is using, which is fit from a separate dataset at the beginning of the recording session. In these five example
channels, we can see the different relationships between the identifiable units on a channel and the signal you get when you set a blind
threshold. Unsorted activity is sometimes well-explained as the sum of units on that channel (A), (B); most often it has the same shape as
the sum of units but a higher baseline rate and modulation depth (C), (D); and sometimes a channel without sortable activity will show
strong modulation in the hash (E).
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Figure 5. The summed activity of all the units on each channel was fit as a linear model of the X- and Y-components of target direction plus
a constant. The same was done with the unsorted threshold crossings. This fit is equivalent to a cosine-tuning function with a baseline rate, a
modulation depth and a preferred direction. Baseline rate is the mean firing rate across all targets. Modulation depth is the height of the
cosine-tuning function, approximately the difference between the most-active target and the least-active target. Preferred direction is the
movement direction which, according to the tuning function, would elicit maximum firing from the unit. The above plots show the
relationship between each parameter of this model when it is fit with the unsorted threshold-crossing data, on the Y-axis, versus the sum of
the sorted units recorded on the same channels, on the X-axis. Each channel gives a single point on the plot; the channels from figure 4 are
indicated with letters. A linear fit is detailed on each plot. Unsorted control shows higher baseline rates, higher modulation depths and
nearly the same preferred directions.

the hypothesis space that is inconsistent with the rest of the
channels, and it will have little weight toward the decoding of
intent. The population vector algorithm gives each signal equal
weight in the computation of intent, even if that signal is highly
inconsistent with the majority of the population. We have

demonstrated that with a good choice of extraction algorithm,
a simple global threshold specification can be used in place
of the spike-sorting schemes of conventional brain–computer
interfaces. These results have an immediate relevance for
designs of self-contained spike processing circuits in the
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next generation of neural prosthetic devices. Without the
need to set parameters of signal processing, it is possible to
make an effective neural prosthetic system without operator
intervention.

Perhaps more importantly, the kind of extraction
algorithm demonstrated in this paper is arguably better suited
to the indistinct patterns of multiunit activity that are typical
of long-term chronic multielectrode recordings. These signals
are composed of summed mixtures of signals from a number
of sources rather than action potentials of individual neurons.
They are subject to high levels of baseline noise and their
tuning functions are harder to predict. We have shown that
a well-chosen extraction algorithm can contend with these
issues and provide a good control signal. While we used the
same signal processing equipment that has been employed for
years in neural prosthetics, we used it in a way that simulated a
much simpler system. Our results show that a probe with fixed
thresholds and one-way telemetry could be used for effective
prosthetic control. It is easier to imagine a turn-key clinical
system for neural prosthetics that is based on the threshold-
crossing counter used here. The elimination of elaborate signal
processing regimes is an important step towards putting neural
prosthetics into the real world.
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